22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159 | class CheckpointRestorer:
"""Handles restoration of simulation state from checkpoint files.
Coordinates the reconstruction of all simulation components from
checkpointed data, ensuring consistency across MPI ranks.
"""
def __init__(self, simulator):
"""
Initialise the checkpoint restorer.
Parameters
----------
simulator : Simulator
The JUNE simulator instance to restore state into
"""
self.simulator = simulator
self.restoration_stats = {}
self.random_state_manager = RandomStateManager()
def restore_from_checkpoint(self, checkpoint_path: Path) -> bool:
"""Restore simulation from checkpoint files.
Args:
checkpoint_path (Path): Directory containing checkpoint files
Returns:
bool: True if restoration was successful
"""
print(f"Rank {mpi_rank}: Starting checkpoint restoration from {checkpoint_path}")
# Validate checkpoint directory
if not self._validate_checkpoint_directory(checkpoint_path):
logger.error(f"Rank {mpi_rank}: Invalid checkpoint directory: {checkpoint_path}")
return False
# Load checkpoint metadata
metadata = self._load_checkpoint_metadata(checkpoint_path)
if not metadata:
logger.error(f"Rank {mpi_rank}: Could not load checkpoint metadata")
return False
# Load rank-specific checkpoint data
rank_file = checkpoint_path / f"checkpoint_rank_{mpi_rank}.h5"
if not rank_file.exists():
logger.error(f"Rank {mpi_rank}: Checkpoint file not found: {rank_file}")
return False
checkpoint_data = self._load_checkpoint_data(rank_file)
if not checkpoint_data:
logger.error(f"Rank {mpi_rank}: Could not load checkpoint data")
return False
# EARLY VALIDATION: Check for disease model mismatch before attempting restoration
if not self._validate_disease_model_compatibility(metadata):
logger.error(f"Rank {mpi_rank}: Checkpoint restoration aborted due to disease model mismatch")
return False
# Coordinate across MPI ranks before restoration
if mpi_available:
mpi_comm.Barrier()
# Restore simulation state components
success = self._restore_simulation_state(checkpoint_data, metadata, checkpoint_path)
if success:
# Mark this simulator as resumed from checkpoint
self.simulator._is_resumed_from_checkpoint = True
self.simulator._is_resumed_and_first_round = True
# Final coordination
if mpi_available:
mpi_comm.Barrier()
print(f"Rank {mpi_rank}: Checkpoint restoration completed successfully")
self._log_restoration_summary()
return True
else:
logger.error(f"Rank {mpi_rank}: Checkpoint restoration failed")
return False
def _validate_checkpoint_directory(self, checkpoint_path: Path) -> bool:
"""Validate that checkpoint directory contains required files
Args:
checkpoint_path (Path):
"""
if not checkpoint_path.exists() or not checkpoint_path.is_dir():
return False
# Check for metadata file
metadata_file = checkpoint_path / "checkpoint_metadata.json"
if not metadata_file.exists():
logger.warning(f"Checkpoint metadata file not found: {metadata_file}")
return False
# Check for rank-specific file
rank_file = checkpoint_path / f"checkpoint_rank_{mpi_rank}.h5"
if not rank_file.exists():
logger.warning(f"Rank-specific checkpoint file not found: {rank_file}")
return False
return True
def _load_checkpoint_metadata(self, checkpoint_path: Path) -> Optional[Dict[str, Any]]:
"""Load checkpoint metadata from JSON file
Args:
checkpoint_path (Path):
"""
metadata_file = checkpoint_path / "checkpoint_metadata.json"
with open(metadata_file, 'r') as f:
metadata = json.load(f)
logger.debug(f"Rank {mpi_rank}: Loaded checkpoint metadata: {metadata.get('checkpoint_type', 'unknown')} "
f"from simulation time {metadata.get('simulation_time', 'unknown')}")
return metadata
def _load_checkpoint_data(self, checkpoint_file: Path) -> Optional[Dict[str, Any]]:
"""Load checkpoint data from HDF5 file
Args:
checkpoint_file (Path):
"""
checkpoint_data = {}
with h5py.File(checkpoint_file, 'r') as f:
# Load metadata
if 'metadata' in f:
metadata_group = f['metadata']
checkpoint_data['_metadata'] = {
attr: metadata_group.attrs[attr] for attr in metadata_group.attrs.keys()
}
# Load each component's data
for component_name in f.keys():
if component_name != 'metadata':
checkpoint_data[component_name] = self._load_component_data(f[component_name])
logger.debug(f"Rank {mpi_rank}: Loaded checkpoint data for components: {list(checkpoint_data.keys())}")
return checkpoint_data
def _load_component_data(self, hdf5_group) -> Dict[str, Any]:
"""Load a component's data from HDF5 group
Args:
hdf5_group:
"""
component_data = {}
# Load attributes with enhanced type preservation
for attr_name in hdf5_group.attrs.keys():
value = hdf5_group.attrs[attr_name]
if isinstance(value, bytes):
value = value.decode('utf-8')
if value == "None":
value = None
elif isinstance(value, str) and value.startswith('{') and value.endswith('}'):
value = json.loads(value)
component_data[attr_name] = value
# Load datasets
for dataset_name in hdf5_group.keys():
dataset = hdf5_group[dataset_name]
if dataset.dtype.kind == 'S': # String dataset
# Handle string arrays (might be JSON-encoded objects)
string_data = [item.decode('utf-8') if isinstance(item, bytes) else item for item in dataset[:]]
# Try to decode as JSON objects
component_data[dataset_name] = [json.loads(item) for item in string_data]
else:
# Numeric dataset
component_data[dataset_name] = dataset[:]
return component_data
def _restore_simulation_state(self, checkpoint_data: Dict[str, Any], metadata: Dict[str, Any], checkpoint_path: Path) -> bool:
"""Restore all simulation state components.
Args:
checkpoint_data (Dict[str, Any]): Loaded checkpoint data
metadata (Dict[str, Any]): Checkpoint metadata
checkpoint_path (Path):
Returns:
bool: True if restoration was successful
"""
print(f"Rank {mpi_rank}: Restoring simulation state components")
restoration_success = True
self.restoration_stats = {}
# Check for feature activations (newly enabled features)
checkpoint_features = metadata.get('feature_flags', {})
current_features = self._get_current_feature_flags()
feature_activations = self._detect_feature_activations(checkpoint_features, current_features)
# Activate newly enabled features before restoring state
if feature_activations:
print(f"Rank {mpi_rank}: Activating newly enabled features: {list(feature_activations.keys())}")
# Validate feature activations are safe
validation_result = self._validate_feature_activations(feature_activations, metadata)
if not validation_result['valid']:
logger.error(f"Rank {mpi_rank}: Feature activation validation failed: {validation_result['reason']}")
return False
success = self._activate_new_features(feature_activations)
if not success:
logger.error(f"Rank {mpi_rank}: Failed to activate new features")
return False
# Restore timer state first (other components depend on it)
if 'timer' in checkpoint_data:
success = self._restore_timer_state(checkpoint_data['timer'])
restoration_success = restoration_success and success
logger.debug(f"Rank {mpi_rank}: Timer restoration: {'success' if success else 'failed'}")
# Restore population health state
if 'population_health' in checkpoint_data:
success = self._restore_population_health(checkpoint_data['population_health'])
restoration_success = restoration_success and success
logger.debug(f"Rank {mpi_rank}: Population health restoration: {'success' if success else 'failed'}")
# Restore interaction transmission tracking state
if 'interaction' in checkpoint_data:
success = self._restore_interaction_state(checkpoint_data['interaction'])
restoration_success = restoration_success and success
logger.debug(f"Rank {mpi_rank}: Interaction state restoration: {'success' if success else 'failed'}")
# Restore random number generator states
random_states = self.random_state_manager.load_states(checkpoint_path)
if random_states is None:
logger.error(f"Rank {mpi_rank}: Failed to load random states")
return False
if not self.random_state_manager.restore_states(random_states):
logger.error(f"Rank {mpi_rank}: Failed to restore random states")
return False
self.restoration_stats['random_states'] = {
'restored_successfully': True,
'manager_used': True
}
logger.debug(f"Rank {mpi_rank}: Random state restoration: success")
# Restore test and trace state (or skip if newly activated)
if 'test_and_trace' in checkpoint_data:
success = self._restore_test_and_trace_state(checkpoint_data['test_and_trace'])
restoration_success = restoration_success and success
logger.debug(f"Rank {mpi_rank}: Test and trace state restoration: {'success' if success else 'failed'}")
elif feature_activations.get('test_and_trace_enabled'):
# Test and trace was newly activated - initialize fresh state
print(f"Rank {mpi_rank}: Test and trace newly activated - starting with fresh state")
self.restoration_stats['test_and_trace'] = {
'enabled': True,
'newly_activated': True,
'restoration_successful': True
}
# Restore rat dynamics state (AFTER random state restoration) or skip if newly activated
if 'rat_dynamics' in checkpoint_data:
success = self._restore_rat_dynamics_state(checkpoint_data['rat_dynamics'])
restoration_success = restoration_success and success
logger.debug(f"Rank {mpi_rank}: Rat dynamics state restoration: {'success' if success else 'failed'}")
elif feature_activations.get('ratty_dynamics_enabled'):
# Rat dynamics was newly activated - initialize fresh state
print(f"Rank {mpi_rank}: Rat dynamics newly activated - starting with fresh state")
self.restoration_stats['rat_dynamics'] = {
'enabled': True,
'newly_activated': True,
'restoration_successful': True
}
# Restore TTEventRecorder state (daily/cumulative test and trace data)
if 'tt_event_recorder' in checkpoint_data:
success = self._restore_tt_event_recorder_state(checkpoint_data['tt_event_recorder'])
restoration_success = restoration_success and success
logger.debug(f"Rank {mpi_rank}: TTEventRecorder state restoration: {'success' if success else 'failed'}")
# Restore school incident tracking state (for NotSendingKidsToSchool policy)
if 'school_incidents' in checkpoint_data:
success = self._restore_school_incident_state(checkpoint_data['school_incidents'])
restoration_success = restoration_success and success
logger.debug(f"Rank {mpi_rank}: School incident state restoration: {'success' if success else 'failed'}")
return restoration_success
def _restore_timer_state(self, timer_data: Dict[str, Any]) -> bool:
"""Restore simulation timer state.
Args:
timer_data (Dict[str, Any]): Timer state data
Returns:
bool: True if restoration was successful
"""
timer = self.simulator.timer
# Store original timer configuration
original_total_days = timer.total_days
original_initial_date = timer.initial_date
# Restore timer state by setting the date directly
# The 'now' property is calculated from the date, so we need to set the date
if 'current_date' in timer_data:
restored_date = datetime.datetime.fromisoformat(timer_data['current_date'])
timer.date = restored_date
logger.debug(f"Rank {mpi_rank}: Timer date restored to {restored_date}")
# Set the shift to 0 to start from the beginning of the day
# This ensures we're at the correct position within the day
timer.shift = 0
timer.delta_time = datetime.timedelta(hours=timer.shift_duration)
# Restore total_days if available
if 'total_days' in timer_data:
timer.total_days = timer_data['total_days']
current_simulation_time = timer.now
remaining_days = original_total_days - current_simulation_time
if remaining_days > 0:
# Recalculate final_date from current date + remaining time
timer.final_date = timer.date + datetime.timedelta(days=remaining_days)
print(f"Rank {mpi_rank}: Final date recalculated to {timer.final_date} (remaining: {remaining_days:.2f} days)")
else:
# If we've already completed the simulation, set final_date to current date
timer.final_date = timer.date
logger.warning(f"Rank {mpi_rank}: Simulation appears to be complete (current time: {current_simulation_time}, total: {original_total_days})")
# Restore other timer attributes if they exist
for attr in ['time_step_size', 'activities_start_time', 'activities_end_time']:
if attr in timer_data and hasattr(timer, attr):
setattr(timer, attr, timer_data[attr])
# Verify the restoration worked correctly
restored_simulation_time = timer.now
expected_time = timer_data.get('current_time', 0)
self.restoration_stats['timer'] = {
'current_time': restored_simulation_time,
'current_date': str(timer.date),
'final_date': str(timer.final_date),
'expected_time': expected_time,
'time_difference': abs(restored_simulation_time - expected_time),
'remaining_days': remaining_days,
'original_total_days': original_total_days
}
print(f"Rank {mpi_rank}: Timer restored to simulation time {restored_simulation_time}, date {timer.date}")
print(f"Rank {mpi_rank}: Simulation will continue until {timer.final_date} ({remaining_days:.2f} days remaining)")
# Check if the restoration was accurate
time_diff = abs(restored_simulation_time - expected_time)
if time_diff > 0.1: # Allow small floating point differences
logger.warning(f"Rank {mpi_rank}: Timer restoration time mismatch. Expected: {expected_time}, Got: {restored_simulation_time}")
return True
def _restore_population_health(self, population_data: Dict[str, Any]) -> bool:
"""Restore population health states.
Args:
population_data (Dict[str, Any]): Population health data
Returns:
bool: True if restoration was successful
"""
people_states = population_data.get('people_states', {})
immunities = population_data.get('immunities', {})
people_ids = population_data.get('people_ids', [])
restored_count = 0
infected_count = 0
hospitalised_count = 0
immunity_count = 0
intensive_care_count = 0
# Create a lookup dictionary for people by ID
people_by_id = {person.id: person for person in self.simulator.world.people}
print(f"Rank {mpi_rank}: Restoring complete population state - {len(people_states)} people with health states, {len(immunities)} immunity records")
for person_id_str, person_state in people_states.items():
person_id = int(person_id_str)
if person_id not in people_by_id:
logger.warning(f"Rank {mpi_rank}: Person {person_id} not found in current world")
continue
person = people_by_id[person_id]
success = self._restore_person_health(person, person_state)
if success:
restored_count += 1
if person_state.get('infected', False):
infected_count += 1
if person_state.get('hospitalised', False):
hospitalised_count += 1
if person_state.get('intensive_care', False):
intensive_care_count += 1
# Restore immunity for ALL people
for person_id_str, immunity_data in immunities.items():
person_id = int(person_id_str)
if person_id not in people_by_id:
logger.warning(f"Rank {mpi_rank}: Person {person_id} not found for immunity restoration")
continue
person = people_by_id[person_id]
# Reconstruct Immunity object from saved data
from june.epidemiology.infection import Immunity
# Complete immunity object data with FIXED key types
susceptibility_dict = immunity_data.get('susceptibility_dict', {})
effective_multiplier_dict = immunity_data.get('effective_multiplier_dict', {})
fixed_susceptibility_dict = {}
for key, value in susceptibility_dict.items():
try:
# Convert string keys back to integers
int_key = int(key) if isinstance(key, str) else key
fixed_susceptibility_dict[int_key] = value
except (ValueError, TypeError):
# Keep original key if conversion fails
fixed_susceptibility_dict[key] = value
fixed_effective_multiplier_dict = {}
for key, value in effective_multiplier_dict.items():
try:
# Convert string keys back to integers
int_key = int(key) if isinstance(key, str) else key
fixed_effective_multiplier_dict[int_key] = value
except (ValueError, TypeError):
# Keep original key if conversion fails
fixed_effective_multiplier_dict[key] = value
# Create proper Immunity with fixed dictionaries
person.immunity = Immunity(
susceptibility_dict=fixed_susceptibility_dict,
effective_multiplier_dict=fixed_effective_multiplier_dict
)
immunity_count += 1
logger.debug(f"Rank {mpi_rank}: Restored Immunity object for person {person_id} with {len(susceptibility_dict)} susceptibilities")
self.restoration_stats['population_health'] = {
'people_restored': restored_count,
'infected_restored': infected_count,
'hospitalised_restored': hospitalised_count,
'immunity_restored': immunity_count,
'total_people': len(self.simulator.world.people)
}
# Restore cemetery state (dead people)
if 'cemetery_state' in population_data:
cemetery_success = self._restore_cemetery_state(population_data['cemetery_state'])
if cemetery_success:
# Get dead people count from the restored data
dead_count = population_data['cemetery_state'].get('total_deaths',
len(population_data['cemetery_state'].get('dead_id', [])))
self.restoration_stats['population_health']['dead_people_restored'] = dead_count
print(f"Rank {mpi_rank}: Restored complete population state:")
print(f" - Health states: {restored_count} people")
print(f" - Infections: {infected_count} people")
print(f" - Hospitalised: {hospitalised_count} people")
print(f" - Immunity: {immunity_count} people")
return True
def _restore_person_health(self, person, person_state: Dict[str, Any]) -> bool:
"""Restore individual person's health state.
Args:
person (Person): The person to restore state for
person_state (Dict[str, Any]): The person's health state data
Returns:
bool: True if restoration was successful
"""
# NOTE: hospitalised and intensive_care are properties computed from medical_facility
# They cannot be set directly - they're computed based on medical facility assignment
# Restore infection details
if 'infection' in person_state:
infection_data = person_state['infection']
success = self._restore_person_infection(person, infection_data)
if not success:
logger.warning(f"Rank {mpi_rank}: Failed to restore infection for person {person.id}")
return False
# Restore health object details
if 'health' in person_state and hasattr(person, 'health'):
health_data = person_state['health']
if 'immunity' in health_data and hasattr(person.health, 'immunity'):
person.health.immunity = health_data['immunity']
if 'vaccination_history' in health_data and hasattr(person.health, 'vaccination_history'):
person.health.vaccination_history = health_data['vaccination_history']
# Restore medical facility assignment (AFTER other state is restored)
if 'medical_facility' in person_state:
facility_data = person_state['medical_facility']
self._restore_hospitalisation(person, facility_data, person_state)
return True
def _restore_hospitalisation(self, person, facility_data: Dict[str, Any], person_state: Dict[str, Any]):
"""Restore a person's hospitalization state.
This needs to respect the hospitalization policy logic:
- People can be in hospital due to severe symptoms OR
- People can be kept in hospital while waiting for test results
Args:
person:
facility_data (Dict[str, Any]):
person_state (Dict[str, Any]):
"""
medical_facility_id = np.int64(facility_data["facility_id"])
medical_facility = self.simulator.world.hospitals.get_from_id(medical_facility_id)
# Check if person should be in hospital based on current symptoms
from june.global_context import GlobalContext
disease_config = GlobalContext.get_disease_config()
if disease_config:
hospitalised_tags = set(disease_config.symptom_manager._resolve_tags("hospitalised_stage"))
intensive_care_tags = set(disease_config.symptom_manager._resolve_tags("intensive_care_stage"))
person_symptoms_tag = person.infection.tag if person.infection else None
# Case 1: Person has symptoms requiring hospitalization
if person_symptoms_tag in hospitalised_tags or person_symptoms_tag in intensive_care_tags:
try:
result = medical_facility.allocate_patient(person)
except Exception as e:
# If allocation fails, try manual assignment
if person.hospitalised:
medical_facility.add_to_ward(person)
elif person.intensive_care:
medical_facility.add_to_icu(person)
# Case 2: Person doesn't have hospitalising symptoms but might be waiting for test results
else:
# Get the saved hospital state from the checkpoint data
from june.checkpointing.state_serialisers import PopulationHealthSerialiser
# We need to determine where this person was in the hospital based on checkpoint data
# Since we can't rely on person.hospitalised/intensive_care (they're properties)
was_hospitalised = person_state.get('hospitalised', False)
was_intensive_care = person_state.get('intensive_care', False)
# Check if they have test_and_trace and are waiting for results
if (person.test_and_trace is not None and
person.test_and_trace.test_result is None):
# Manually assign to hospital without going through allocate_patient
# since they're being kept for test results, not symptoms
if was_intensive_care:
medical_facility.add_to_icu(person)
elif was_hospitalised:
medical_facility.add_to_ward(person)
else:
# This person was hospitalised but doesn't meet current criteria
# We should still restore them to maintain checkpoint consistency
if was_intensive_care:
medical_facility.add_to_icu(person)
elif was_hospitalised:
medical_facility.add_to_ward(person)
def _restore_person_infection(self, person, infection_data: Dict[str, Any]) -> bool:
"""Restore a person's infection by reconstructing the infection object.
Args:
person (Person): The person to restore infection for
infection_data (Dict[str, Any]): Infection data from checkpoint
Returns:
bool: True if restoration was successful
"""
# Import infection classes
from june.epidemiology.infection import infection as infection_module
# Get infection class - prefer infection_class over infection_type for accuracy
infection_type = infection_data.get('infection_class') or infection_data.get('infection_type')
if not infection_type:
logger.error(f"Rank {mpi_rank}: No infection class/type specified for person {person.id}")
return False
# Get the infection class from the module
if not hasattr(infection_module, infection_type):
logger.error(f"Rank {mpi_rank}: Unknown infection type: {infection_type}")
return False
infection_class = getattr(infection_module, infection_type)
# Restore symptoms and transmission first
symptoms = None
transmission = None
if 'symptoms' in infection_data:
symptoms = self._restore_symptoms(infection_data['symptoms'])
if symptoms is None:
logger.error(f"Rank {mpi_rank}: Failed to restore symptoms for person {person.id}")
return False
if 'transmission' in infection_data:
transmission = self._restore_transmission(infection_data['transmission'])
if transmission is None:
logger.error(f"Rank {mpi_rank}: Failed to restore transmission for person {person.id}")
return False
# Create the infection object
# Most infections take transmission and symptoms as constructor parameters
infection = infection_class(
transmission=transmission,
symptoms=symptoms
)
# Restore other infection attributes
if 'start_time' in infection_data:
infection.start_time = infection_data['start_time']
if 'transmission_multiplier' in infection_data:
infection.transmission_multiplier = infection_data['transmission_multiplier']
# NOTE: infection.tag is a read-only property that returns symptoms.tag
# We don't need to set it since we already restored the symptoms
# Restore additional attributes if they exist on the infection class
for attr in ['infectiousness', 'severity_multiplier', 'time_of_recovery']:
if attr in infection_data and hasattr(infection, attr):
setattr(infection, attr, infection_data[attr])
# Assign the infection to the person
person.infection = infection
logger.debug(f"Rank {mpi_rank}: Successfully restored {infection_type} infection for person {person.id}")
return True
def _restore_symptoms(self, symptoms_data: Dict[str, Any]):
"""Restore symptoms object from serialised data by avoiding constructor trajectory generation.
Args:
symptoms_data (Dict[str, Any]): Serialised symptoms data
Returns:
Symptoms or None: Reconstructed symptoms object or None if failed
"""
from june.epidemiology.infection import Symptoms, SymptomTag
from june.global_context import GlobalContext
# Get disease_config from GlobalContext
disease_config = GlobalContext.get_disease_config()
if disease_config is None:
logger.error(f"Rank {mpi_rank}: Cannot restore symptoms - no disease_config available in GlobalContext")
return None
# Create symptoms object WITHOUT triggering trajectory generation
# We'll manually set all attributes to avoid constructor side effects
symptoms = object.__new__(Symptoms) # Create instance without calling __init__
# Set the disease_config attribute that would normally be set by constructor
symptoms.disease_config = disease_config
# Restore all attributes directly from saved data
# Note: SymptomTag is dynamically loaded, so we work with raw integer values
if 'max_tag' in symptoms_data and symptoms_data['max_tag'] is not None:
# Store as raw integer value - the enum structure may not be available
symptoms.max_tag = int(symptoms_data['max_tag'])
logger.debug(f"Rank {mpi_rank}: Restored max_tag as integer: {symptoms.max_tag}")
else:
symptoms.max_tag = None
if 'tag' in symptoms_data and symptoms_data['tag'] is not None:
# Store as raw integer value - the enum structure may not be available
symptoms.tag = int(symptoms_data['tag'])
logger.debug(f"Rank {mpi_rank}: Restored tag as integer: {symptoms.tag}")
else:
symptoms.tag = None
if 'max_severity' in symptoms_data and symptoms_data['max_severity'] is not None:
symptoms.max_severity = symptoms_data['max_severity']
else:
symptoms.max_severity = None
if 'stage' in symptoms_data and symptoms_data['stage'] is not None:
symptoms.stage = symptoms_data['stage']
else:
symptoms.stage = None
if 'time_of_symptoms_onset' in symptoms_data and symptoms_data['time_of_symptoms_onset'] is not None:
symptoms.time_of_symptoms_onset = symptoms_data['time_of_symptoms_onset']
else:
symptoms.time_of_symptoms_onset = None
# Simple trajectory restoration (match new serialization format)
if 'trajectory_times' in symptoms_data and 'trajectory_symptoms' in symptoms_data:
times = symptoms_data['trajectory_times']
symptom_tags = symptoms_data['trajectory_symptoms']
logger.debug(f"Rank {mpi_rank}: Restoring trajectory with {len(times)} points")
# Reconstruct trajectory preserving all types
trajectory = []
# Convert all times to numpy float64 before the loop
times_np = np.array(times, dtype=np.float64)
# Then use the converted array in your loop
for i, (time, symp_int) in enumerate(zip(times_np, symptom_tags)):
try:
# time is already numpy.float64 now
trajectory.append((time, symp_int))
except (ValueError, TypeError) as e:
logger.warning(f"Rank {mpi_rank}: Failed to restore trajectory point {i}: {e}. Skipping.")
continue
symptoms.trajectory = tuple(trajectory)
logger.debug(f"Rank {mpi_rank}: Successfully restored trajectory with {len(trajectory)} valid points")
else:
symptoms.trajectory = tuple() # Empty trajectory
logger.debug(f"Rank {mpi_rank}: Successfully restored symptoms with {len(symptoms.trajectory) if symptoms.trajectory else 0} trajectory points")
return symptoms
def _restore_transmission(self, transmission_data: Dict[str, Any]):
"""Restore transmission object from serialised data.
Args:
transmission_data (Dict[str, Any]): Serialised transmission data
Returns:
Transmission or None: Reconstructed transmission object or None if failed
"""
from june.epidemiology.infection import (
TransmissionGamma,
TransmissionConstant,
TransmissionXNExp
)
# Map transmission type names to classes
transmission_classes = {
'TransmissionXNExp': TransmissionXNExp,
'TransmissionGamma': TransmissionGamma,
'TransmissionConstant': TransmissionConstant
}
transmission_type = transmission_data.get('transmission_type')
if not transmission_type:
logger.error(f"Rank {mpi_rank}: No transmission type specified in transmission data")
return None
if transmission_type not in transmission_classes:
logger.error(f"Rank {mpi_rank}: Unknown transmission type: {transmission_type}")
return None
# Create transmission object
transmission_class = transmission_classes[transmission_type]
transmission = transmission_class()
# Restore attributes based on transmission type
if transmission_type == 'TransmissionXNExp':
for attr in ['time_first_infectious', 'norm_time', 'n', 'norm', 'alpha']:
if attr in transmission_data and transmission_data[attr] is not None:
setattr(transmission, attr, transmission_data[attr])
elif transmission_type == 'TransmissionGamma':
for attr in ['shape', 'shift', 'scale', 'norm']:
if attr in transmission_data and transmission_data[attr] is not None:
setattr(transmission, attr, transmission_data[attr])
elif transmission_type == 'TransmissionConstant':
if 'probability' in transmission_data and transmission_data['probability'] is not None:
transmission.probability = transmission_data['probability']
if 'current_probability' in transmission_data:
transmission.probability = transmission_data['current_probability']
logger.debug(f"Rank {mpi_rank}: Restored transmission probability directly: {transmission.probability}")
return transmission
def _restore_cemetery_state(self, cemetery_data: Dict[str, Any]) -> bool:
"""Restore cemetery state by reconstructing dead people assignments.
Args:
cemetery_data (Dict[str, Any]): Cemetery state data including dead people IDs
Returns:
bool: True if restoration was successful
"""
# Check if we have dead_id data in the expected format
if 'dead_id' not in cemetery_data:
logger.debug(f"Rank {mpi_rank}: No dead_id data to restore")
return True
dead_ids = cemetery_data['dead_id']
people_ids = {person.id for person in self.simulator.world.people}
print(f"Rank {mpi_rank}: Restoring {len(dead_ids)} dead people to cemeteries")
restored_deaths = 0
for dead_id in dead_ids:
if dead_id not in people_ids:
continue
person = self.simulator.world.people.get_from_id(dead_id)
person.dead = True
cemetery = self.simulator.world.cemeteries.get_nearest(person)
cemetery.add(person)
person.subgroups = Activities(None, None, None, None, None, None, None)
restored_deaths += 1
print(f"Rank {mpi_rank}: Successfully restored {restored_deaths} dead people to cemeteries")
return True
def _restore_interaction_state(self, interaction_data: Dict[str, Any]) -> bool:
"""Restore interaction transmission tracking state.
Args:
interaction_data (Dict[str, Any]): Interaction state data from checkpoint
Returns:
bool: True if restoration was successful
"""
# Get the interaction object from the simulator
interaction = getattr(self.simulator, 'interaction', None)
if interaction is None:
logger.error(f"Rank {mpi_rank}: No interaction object found in simulator")
return False
# Restore configuration flags - set this BEFORE restoring IDs
if 'initial_infected_ids_loaded' in interaction_data:
interaction._initial_infected_ids_loaded = interaction_data['initial_infected_ids_loaded']
# Restore core transmission tracking
if 'initial_infected_ids' in interaction_data:
interaction._initial_infected_ids = set(interaction_data['initial_infected_ids'])
interaction._initial_infected_ids_loaded = True # Force flag to True after restoration
logger.debug(f"Rank {mpi_rank}: Restored {len(interaction._initial_infected_ids)} initial infected IDs")
# Debug: verify the restored data
print(f"Rank {mpi_rank}: DEBUG - Restored initial infected IDs: {len(interaction._initial_infected_ids)} IDs")
if len(interaction._initial_infected_ids) > 0:
sample_ids = list(interaction._initial_infected_ids)[:5]
print(f"Rank {mpi_rank}: DEBUG - Sample restored IDs: {sample_ids}")
else:
logger.warning(f"Rank {mpi_rank}: No initial_infected_ids found in checkpoint data")
if 'initial_infected_transmission_counts' in interaction_data:
from collections import defaultdict
interaction.initial_infected_transmission_counts = defaultdict(int)
for key, value in interaction_data['initial_infected_transmission_counts'].items():
try:
int_key = int(key)
interaction.initial_infected_transmission_counts[int_key] = value
except (ValueError, TypeError):
logger.warning(f"Rank {mpi_rank}: Could not convert transmission count key '{key}' to int")
logger.debug(f"Rank {mpi_rank}: Restored transmission counts for {len(interaction.initial_infected_transmission_counts)} transmitters")
# DEBUG: Print detailed transmission counts for debugging
print(f"[Rank {mpi_rank}] Restored transmission counts:")
print(f" Total transmitters restored: {len(interaction.initial_infected_transmission_counts)}")
print(f" Total transmissions restored: {sum(interaction.initial_infected_transmission_counts.values())}")
if len(interaction.initial_infected_transmission_counts) > 0:
sample_transmitters = list(interaction.initial_infected_transmission_counts.items())[:5]
print(f" Sample transmitters: {sample_transmitters}")
print(f" Sample transmitter key types: {[type(k) for k, v in sample_transmitters]}")
if 'previous_transmission_counts' in interaction_data:
from collections import defaultdict
interaction.previous_transmission_counts = defaultdict(int)
for key, value in interaction_data['previous_transmission_counts'].items():
try:
int_key = int(key)
interaction.previous_transmission_counts[int_key] = value
except (ValueError, TypeError):
logger.warning(f"Rank {mpi_rank}: Could not convert previous transmission count key '{key}' to int")
logger.debug(f"Rank {mpi_rank}: Restored {len(interaction.previous_transmission_counts)} previous transmission counts")
# Debug: verify the restoration preserves the difference for timestep calculation
current_total = sum(interaction.initial_infected_transmission_counts.values())
previous_total = sum(interaction.previous_transmission_counts.values())
logger.debug(f"Rank {mpi_rank}: Current total transmissions: {current_total}, Previous total: {previous_total}")
# NOTE: previous_transmission_counts is already restored from checkpoint data above.
# DO NOT overwrite it with current counts, as that would make ALL transmissions
# appear as "new" in the next timestep calculation.
# The checkpoint data contains the correct previous counts for proper timestep diff calculation.
if 'timestep_count' in interaction_data:
interaction.timestep_count = interaction_data['timestep_count']
logger.debug(f"Rank {mpi_rank}: Restored timestep count: {interaction.timestep_count}")
# Restore debug tracking data
if 'debug_cross_rank_infectors' in interaction_data:
from collections import defaultdict
interaction.debug_cross_rank_infectors = defaultdict(set)
for person_id, ranks in interaction_data['debug_cross_rank_infectors'].items():
interaction.debug_cross_rank_infectors[int(person_id)] = set(ranks)
logger.debug(f"Rank {mpi_rank}: Restored debug cross-rank infector data")
if 'debug_timestep_infectors' in interaction_data:
from collections import defaultdict
interaction.debug_timestep_infectors = defaultdict(lambda: defaultdict(int))
for timestep, counts in interaction_data['debug_timestep_infectors'].items():
interaction.debug_timestep_infectors[int(timestep)].update(counts)
logger.debug(f"Rank {mpi_rank}: Restored debug timestep infector data")
if 'debug_infector_venues' in interaction_data:
from collections import defaultdict
interaction.debug_infector_venues = defaultdict(list)
for person_id, venues in interaction_data['debug_infector_venues'].items():
interaction.debug_infector_venues[int(person_id)] = venues
logger.debug(f"Rank {mpi_rank}: Restored debug venue data")
# Restore interaction configuration (for validation)
if 'alpha_physical' in interaction_data:
if abs(interaction.alpha_physical - interaction_data['alpha_physical']) > 1e-6:
logger.warning(f"Rank {mpi_rank}: Alpha physical mismatch. Current: {interaction.alpha_physical}, Restored: {interaction_data['alpha_physical']}")
# Mark interaction as restored from checkpoint for verification
interaction._is_resumed_from_checkpoint = True
# Set flag to indicate this interaction was restored from checkpoint
interaction._restored_from_checkpoint = True
# Log restoration summary
stats = interaction_data.get('statistics_summary', {})
print(f"Rank {mpi_rank}: Restored interaction transmission state:")
print(f" - Initial infected: {stats.get('total_initial_infected', len(interaction._initial_infected_ids))}")
print(f" - Transmitting initial infected: {stats.get('total_transmitting_initial_infected', len(interaction.initial_infected_transmission_counts))}")
print(f" - Total secondary infections: {stats.get('total_secondary_infections', sum(interaction.initial_infected_transmission_counts.values()))}")
print(f" - Current timestep: {stats.get('current_timestep', interaction.timestep_count)}")
print(f" - IDs loaded flag: {interaction._initial_infected_ids_loaded}")
print(f" - Current initial infected IDs count: {len(interaction._initial_infected_ids)}")
self.restoration_stats['interaction'] = {
'initial_infected_count': len(interaction._initial_infected_ids),
'transmitters_count': len(interaction.initial_infected_transmission_counts),
'total_secondary_infections': sum(interaction.initial_infected_transmission_counts.values()),
'timestep_count': interaction.timestep_count,
'restoration_successful': True
}
return True
def _restore_test_and_trace_state(self, test_trace_data: Dict[str, Any]) -> bool:
"""Restore test and trace system state.
Args:
test_trace_data (Dict[str, Any]): Test and trace state data from checkpoint
Returns:
bool: True if restoration was successful
"""
print(f"Rank {mpi_rank}: Restoring test and trace system state")
# Check if test and trace was enabled in the checkpoint
if not test_trace_data.get('enabled', False):
print(f"Rank {mpi_rank}: Test and trace was disabled in checkpoint - skipping restoration")
self.restoration_stats['test_and_trace'] = {
'enabled': False,
'restoration_successful': True
}
return True
# Check if test and trace is currently enabled
current_enabled = getattr(self.simulator, 'test_and_trace_enabled', False)
if not current_enabled:
print(f"Rank {mpi_rank}: Test and trace was enabled in checkpoint but is disabled in current simulation")
print(f"Rank {mpi_rank}: Skipping test and trace state restoration (feature disabled)")
self.restoration_stats['test_and_trace'] = {
'enabled': False,
'checkpoint_had_enabled': True,
'restoration_successful': True,
'note': 'feature_disabled_in_current_simulation'
}
return True
restoration_success = True
stats = {
'enabled': True,
'people_restored': 0,
'contact_manager_restored': False,
'policy_configs_restored': False
}
# Restore individual TestAndTrace objects
if 'person_test_trace_states' in test_trace_data:
success = self._restore_person_test_trace_states(test_trace_data['person_test_trace_states'])
restoration_success = restoration_success and success
stats['people_restored'] = len(test_trace_data['person_test_trace_states'])
logger.debug(f"Rank {mpi_rank}: Person test and trace states restoration: {'success' if success else 'failed'}")
# Restore contact manager state
if 'contact_manager_state' in test_trace_data and hasattr(self.simulator, 'contact_manager'):
success = self._restore_contact_manager_state(test_trace_data['contact_manager_state'])
restoration_success = restoration_success and success
stats['contact_manager_restored'] = success
logger.debug(f"Rank {mpi_rank}: Contact manager state restoration: {'success' if success else 'failed'}")
# Policy configurations are informational - restoration is optional
if 'policy_configurations' in test_trace_data:
try:
self._validate_policy_configurations(test_trace_data['policy_configurations'])
stats['policy_configs_restored'] = True
except Exception as e:
logger.warning(f"Rank {mpi_rank}: Policy configuration validation failed: {e}")
stats['policy_configs_restored'] = False
self.restoration_stats['test_and_trace'] = stats
self.restoration_stats['test_and_trace']['restoration_successful'] = restoration_success
print(f"Rank {mpi_rank}: Test and trace restoration completed - {stats['people_restored']} people restored")
return restoration_success
def _restore_person_test_trace_states(self, person_states: Dict[str, Any]) -> bool:
"""Restore TestAndTrace objects for all people who had them.
Args:
person_states (Dict[str, Any]): Person test and trace states from checkpoint
Returns:
bool: True if restoration was successful
"""
people_by_id = {person.id: person for person in self.simulator.world.people}
restored_count = 0
for person_id_str, tt_data in person_states.items():
person_id = int(person_id_str)
if person_id not in people_by_id:
logger.warning(f"Rank {mpi_rank}: Person {person_id} not found in current world for test and trace restoration")
continue
person = people_by_id[person_id]
success = self._restore_single_test_trace(person, tt_data)
if success:
restored_count += 1
else:
logger.warning(f"Rank {mpi_rank}: Failed to restore test and trace for person {person_id}")
print(f"Rank {mpi_rank}: Restored test and trace state for {restored_count} people")
return True
def _restore_single_test_trace(self, person, tt_data: Dict[str, Any]) -> bool:
"""Restore a single TestAndTrace object for a person.
Args:
person (Person): The person to restore test and trace for
tt_data (Dict[str, Any]): Test and trace data from checkpoint
Returns:
bool: True if restoration was successful
"""
try:
from june.epidemiology.test_and_trace import TestAndTrace
# Create new TestAndTrace object
person.test_and_trace = TestAndTrace()
tt = person.test_and_trace
# Restore all attributes
if 'notification_time' in tt_data:
tt.notification_time = tt_data['notification_time']
if 'scheduled_test_time' in tt_data:
tt.scheduled_test_time = tt_data['scheduled_test_time']
if 'contacts_traced' in tt_data:
tt.contacts_traced = tt_data['contacts_traced']
if 'time_of_testing' in tt_data:
tt.time_of_testing = tt_data['time_of_testing']
if 'time_of_result' in tt_data:
tt.time_of_result = tt_data['time_of_result']
if 'pending_test_result' in tt_data:
tt.pending_test_result = tt_data['pending_test_result']
if 'test_result' in tt_data:
tt.test_result = tt_data['test_result']
if 'emited_quarantine_start_event' in tt_data:
tt.emited_quarantine_start_event = tt_data['emited_quarantine_start_event']
if 'emited_quarantine_end_event' in tt_data:
tt.emited_quarantine_end_event = tt_data['emited_quarantine_end_event']
if 'isolation_start_time' in tt_data:
tt.isolation_start_time = tt_data['isolation_start_time']
if 'isolation_end_time' in tt_data:
tt.isolation_end_time = tt_data['isolation_end_time']
if 'tracer_id' in tt_data:
tt.tracer_id = tt_data['tracer_id']
if 'contact_reason' in tt_data:
tt.contact_reason = tt_data['contact_reason']
return True
except Exception as e:
logger.error(f"Rank {mpi_rank}: Error restoring test and trace for person {person.id}: {e}")
return False
def _restore_contact_manager_state(self, cm_data: Dict[str, Any]) -> bool:
"""Restore contact manager state.
Args:
cm_data (Dict[str, Any]): Contact manager state data from checkpoint
Returns:
bool: True if restoration was successful
"""
contact_manager = self.simulator.contact_manager
try:
# Restore leisure companions
if 'leisure_companions' in cm_data:
contact_manager.leisure_companions.clear()
for person_id_str, companions in cm_data['leisure_companions'].items():
person_id = int(person_id_str)
contact_manager.leisure_companions[person_id] = {}
for companion_id_str, companion_info in companions.items():
companion_id = int(companion_id_str)
contact_manager.leisure_companions[person_id][companion_id] = {
'timestamp': companion_info['timestamp'],
'activity': companion_info['activity'],
'home_rank': companion_info.get('home_rank', 0)
}
# Restore pending tests
if 'tests_ids_pending' in cm_data:
contact_manager.tests_ids_pending = []
for test_info in cm_data['tests_ids_pending']:
# Convert string keys back to appropriate types
restored_test = {}
for key, value in test_info.items():
if key in ['person_id', 'residence_id', 'primary_activity_group_id', 'primary_activity_subgroup_type', 'pa_domain_id']:
restored_test[key] = int(value) if value != -1 else -1
elif key in ['result_time']:
restored_test[key] = float(value)
elif key in ['is_pa_external']:
restored_test[key] = bool(value)
else:
restored_test[key] = value
contact_manager.tests_ids_pending.append(restored_test)
# Restore cleanup timestamp
if 'last_cleanup' in cm_data:
contact_manager.last_cleanup = cm_data['last_cleanup']
print(f"Rank {mpi_rank}: Contact manager state restored - "
f"{len(contact_manager.leisure_companions)} people with leisure companions, "
f"{len(contact_manager.tests_ids_pending)} pending tests")
return True
except Exception as e:
logger.error(f"Rank {mpi_rank}: Error restoring contact manager state: {e}")
return False
def _validate_policy_configurations(self, policy_configs: Dict[str, Any]) -> bool:
"""Validate that current policy configurations match checkpoint configurations.
Args:
policy_configs (Dict[str, Any]): Policy configurations from checkpoint
Returns:
bool: True if configurations are compatible
"""
# This is primarily for validation/warning purposes
# Policy configurations are set at simulation start and don't need restoration
try:
from june.global_context import GlobalContext
disease_config = GlobalContext.get_disease_config()
if disease_config and hasattr(disease_config, 'policy_manager'):
# Check key policy parameters for compatibility
for policy_name in ['testing', 'tracing']:
if policy_name in policy_configs:
checkpoint_config = policy_configs[policy_name]
current_config = disease_config.policy_manager.get_policy_data(policy_name)
if current_config:
# Check critical parameters
if policy_name == 'testing':
checkpoint_accuracy = checkpoint_config.get('test_accuracy')
current_accuracy = current_config.get('test_accuracy')
if checkpoint_accuracy != current_accuracy:
logger.warning(f"Rank {mpi_rank}: Test accuracy mismatch - checkpoint: {checkpoint_accuracy}, current: {current_accuracy}")
elif policy_name == 'tracing':
checkpoint_contacts = checkpoint_config.get('max_contacts_to_trace')
current_contacts = current_config.get('max_contacts_to_trace')
if checkpoint_contacts != current_contacts:
logger.warning(f"Rank {mpi_rank}: Max contacts to trace mismatch - checkpoint: {checkpoint_contacts}, current: {current_contacts}")
return True
except Exception as e:
logger.warning(f"Rank {mpi_rank}: Policy configuration validation error: {e}")
return False
def _restore_rat_dynamics_state(self, rat_data: Dict[str, Any]) -> bool:
"""Restore rat dynamics state including rat populations and disease models.
Args:
rat_data (Dict[str, Any]): Rat dynamics data from checkpoint
Returns:
bool: True if restoration was successful
"""
logger.debug(f"Rank {mpi_rank}: Restoring rat dynamics state")
try:
# Check if rat dynamics was enabled
if not rat_data.get('enabled', False):
logger.debug(f"Rank {mpi_rank}: Rat dynamics was disabled in checkpoint")
self.restoration_stats['rat_dynamics'] = {'enabled': False}
return True
# Check if rat dynamics was properly initialised
if not rat_data.get('initialised', False):
logger.warning(f"Rank {mpi_rank}: Rat dynamics was not properly initialised in checkpoint")
self.restoration_stats['rat_dynamics'] = {'enabled': True, 'initialised': False}
return True
# Get the rat manager from simulator
rat_manager = getattr(self.simulator, 'rat_manager', None)
if rat_manager is None:
logger.error(f"Rank {mpi_rank}: No rat manager found in simulator for restoration")
return False
print(f"Rank {mpi_rank}: Restoring rat dynamics - {rat_data['statistics']['total_rats']} rats")
# Restore rat manager configuration
if not self._restore_rat_manager_config(rat_manager, rat_data['rat_manager_config']):
return False
# Restore rat population state
if not self._restore_rat_population_state(rat_manager, rat_data['rat_population_state']):
return False
# Restore density calculator state
if not self._restore_density_calculator_state(rat_manager, rat_data['density_calculator_state']):
return False
# Restore disease model state
if not self._restore_disease_model_state(rat_manager, rat_data['disease_model_state']):
return False
# Restore spatial grid state
if not self._restore_spatial_grid_state(rat_manager, rat_data['spatial_grid_state']):
return False
# Restore area mapper state
if not self._restore_area_mapper_state(rat_manager, rat_data['area_mapper_state']):
return False
# Ensure spatial grid is properly initialised after restoration
if rat_manager.spatial_grid.spatial_grid_array is None and rat_manager.num_rats > 0:
rat_manager.spatial_grid.initialise_spatial_grid()
# Update restoration statistics
self.restoration_stats['rat_dynamics'] = {
'enabled': True,
'initialised': True,
'total_rats_restored': rat_data['statistics']['total_rats'],
'infected_rats_restored': rat_data['statistics']['infected_rats'],
'restored_successfully': True
}
print(f"Rank {mpi_rank}: Rat dynamics restoration completed successfully")
return True
except Exception as e:
logger.error(f"Rank {mpi_rank}: Error restoring rat dynamics state: {e}")
import traceback
traceback.print_exc()
return False
def _restore_rat_manager_config(self, rat_manager, config_data: Dict[str, Any]) -> bool:
"""Restore RatManager configuration with detailed debugging
Args:
rat_manager:
config_data (Dict[str, Any]):
"""
logger.debug(f"=== RAT MANAGER CONFIG DEBUG - AFTER CHECKPOINT RESTORATION ===")
logger.debug(f"BEFORE RESTORATION:")
logger.debug(f" num_rats: {rat_manager.num_rats}")
logger.debug(f" dt: {rat_manager.dt}")
logger.debug(f" rat_to_human_factor: {rat_manager.rat_to_human_factor}")
logger.debug(f" human_to_rat_factor: {rat_manager.human_to_rat_factor}")
logger.debug(f" initial_infections: {rat_manager.initial_infections}")
rat_manager.num_rats = config_data['num_rats']
rat_manager.dt = config_data['dt']
rat_manager.rat_to_human_factor = config_data['rat_to_human_factor']
rat_manager.human_to_rat_factor = config_data['human_to_rat_factor']
rat_manager.initial_infections = config_data['initial_infections']
# Restore grid dimensions and bounds
rat_manager.minx = config_data.get('minx')
rat_manager.miny = config_data.get('miny')
rat_manager.maxx = config_data.get('maxx')
rat_manager.maxy = config_data.get('maxy')
rat_manager.sim_rows = config_data.get('sim_rows')
rat_manager.sim_cols = config_data.get('sim_cols')
logger.debug(f"AFTER RESTORATION:")
logger.debug(f" num_rats: {rat_manager.num_rats}")
logger.debug(f" dt: {rat_manager.dt}")
logger.debug(f" rat_to_human_factor: {rat_manager.rat_to_human_factor}")
logger.debug(f" human_to_rat_factor: {rat_manager.human_to_rat_factor}")
logger.debug(f" initial_infections: {rat_manager.initial_infections}")
logger.debug(f" Grid bounds - minx: {rat_manager.minx}, miny: {rat_manager.miny}, maxx: {rat_manager.maxx}, maxy: {rat_manager.maxy}")
logger.debug(f" Grid dimensions - rows: {rat_manager.sim_rows}, cols: {rat_manager.sim_cols}")
return True
def _restore_rat_population_state(self, rat_manager, population_data: Dict[str, Any]) -> bool:
"""Restore rat population arrays with comprehensive debugging
Args:
rat_manager:
population_data (Dict[str, Any]):
"""
if population_data['num_rats'] == 0:
logger.debug(f"=== RAT POPULATION STATE DEBUG - NO RATS TO RESTORE ===")
return True
print(f"=== RAT POPULATION STATE DEBUG - AFTER CHECKPOINT RESTORATION ===")
print(f"BEFORE RESTORATION:")
print(f" Total rats: {rat_manager.num_rats}")
# Debug BEFORE restoration
if rat_manager.positions is not None:
print(f" Existing positions shape: {rat_manager.positions.shape}")
print(f" Existing positions sample: {rat_manager.positions[:3].tolist()}")
else:
print(f" Existing positions: None")
if rat_manager.states is not None:
state_counts = np.bincount(rat_manager.states, minlength=3)
print(f" Existing state distribution - S: {state_counts[0]}, I: {state_counts[1]}, R: {state_counts[2]}")
else:
print(f" Existing states: None")
# Restore population arrays with explicit type conversion
rat_manager.positions = np.array(population_data['positions'], dtype=float) if population_data['positions'] is not None else None
rat_manager.states = np.array(population_data['states'], dtype=int) if population_data['states'] is not None else None
rat_manager.infection_age = np.array(population_data['infection_age'], dtype=float) if population_data['infection_age'] is not None else None
rat_manager.immunity = np.array(population_data['immunity'], dtype=float) if population_data['immunity'] is not None else None
rat_manager.personal_delta = np.array(population_data['personal_delta'], dtype=float) if population_data['personal_delta'] is not None else None
rat_manager.grid_indices = np.array(population_data['grid_indices'], dtype=int) if population_data['grid_indices'] is not None else None
print(f"AFTER RESTORATION:")
# Debug positions after restoration
if rat_manager.positions is not None:
print(f" Restored positions shape: {rat_manager.positions.shape}")
print(f" Restored positions dtype: {rat_manager.positions.dtype}")
print(f" First 5 restored positions: {rat_manager.positions[:5].tolist()}")
print(f" Restored position bounds - X: [{np.min(rat_manager.positions[:, 0]):.6f}, {np.max(rat_manager.positions[:, 0]):.6f}]")
print(f" Restored position bounds - Y: [{np.min(rat_manager.positions[:, 1]):.6f}, {np.max(rat_manager.positions[:, 1]):.6f}]")
print(f" Restored position mean - X: {np.mean(rat_manager.positions[:, 0]):.6f}, Y: {np.mean(rat_manager.positions[:, 1]):.6f}")
# Debug states after restoration
if rat_manager.states is not None:
state_counts = np.bincount(rat_manager.states, minlength=3)
print(f" Restored states shape: {rat_manager.states.shape}, dtype: {rat_manager.states.dtype}")
print(f" Restored state distribution - Susceptible(0): {state_counts[0]}, Infected(1): {state_counts[1]}, Recovered(2): {state_counts[2]}")
print(f" First 10 restored states: {rat_manager.states[:10].tolist()}")
# Debug infection ages after restoration
if rat_manager.infection_age is not None:
infected_mask = rat_manager.states == 1
print(f" Restored infection ages shape: {rat_manager.infection_age.shape}, dtype: {rat_manager.infection_age.dtype}")
print(f" Restored infection age range: [{np.min(rat_manager.infection_age):.6f}, {np.max(rat_manager.infection_age):.6f}]")
if np.any(infected_mask):
print(f" Restored infected rats infection ages: {rat_manager.infection_age[infected_mask][:10].tolist()}")
# Debug immunity after restoration
if rat_manager.immunity is not None:
print(f" Restored immunity shape: {rat_manager.immunity.shape}, dtype: {rat_manager.immunity.dtype}")
print(f" Restored immunity range: [{np.min(rat_manager.immunity):.6f}, {np.max(rat_manager.immunity):.6f}]")
print(f" Restored immunity mean: {np.mean(rat_manager.immunity):.6f}")
print(f" First 10 restored immunity values: {rat_manager.immunity[:10].tolist()}")
# Debug personal delta after restoration
if rat_manager.personal_delta is not None:
print(f" Restored personal delta shape: {rat_manager.personal_delta.shape}, dtype: {rat_manager.personal_delta.dtype}")
print(f" Restored personal delta range: [{np.min(rat_manager.personal_delta):.6f}, {np.max(rat_manager.personal_delta):.6f}]")
print(f" Restored personal delta mean: {np.mean(rat_manager.personal_delta):.6f}")
# Debug grid indices after restoration
if rat_manager.grid_indices is not None:
print(f" Restored grid indices shape: {rat_manager.grid_indices.shape}, dtype: {rat_manager.grid_indices.dtype}")
print(f" Restored grid indices range - Row: [{np.min(rat_manager.grid_indices[:, 0])}, {np.max(rat_manager.grid_indices[:, 0])}]")
print(f" Restored grid indices range - Col: [{np.min(rat_manager.grid_indices[:, 1])}, {np.max(rat_manager.grid_indices[:, 1])}]")
print(f" First 5 restored grid indices: {rat_manager.grid_indices[:5].tolist()}")
print(f"=== RAT POPULATION RESTORATION COMPLETE ===")
return True
def _restore_density_calculator_state(self, rat_manager, density_data: Dict[str, Any]) -> bool:
"""Restore density calculator state
Args:
rat_manager:
density_data (Dict[str, Any]):
"""
density_calc = rat_manager.density_calculator
# Restore configuration
density_calc.rat_ratio = density_data['rat_ratio']
density_calc.cell_size = density_data['cell_size']
density_calc.gaussian_sigma = density_data['gaussian_sigma']
density_calc.precomputed_density_path = density_data['precomputed_density_path']
density_calc.total_population = density_data['total_population']
density_calc.coordinate_system = density_data.get('coordinate_system')
# Restore grid bounds
density_calc.minx = density_data.get('minx')
density_calc.miny = density_data.get('miny')
density_calc.maxx = density_data.get('maxx')
density_calc.maxy = density_data.get('maxy')
density_calc.sim_rows = density_data.get('sim_rows')
density_calc.sim_cols = density_data.get('sim_cols')
# Restore rat density array
if density_data['rat_density'] is not None:
density_calc.rat_density = np.array(density_data['rat_density'], dtype=float)
return True
def _restore_disease_model_state(self, rat_manager, disease_data: Dict[str, Any]) -> bool:
"""Restore disease model state with detailed debugging
Args:
rat_manager:
disease_data (Dict[str, Any]):
"""
disease_model = rat_manager.disease_model
logger.debug(f"=== RAT DISEASE MODEL STATE DEBUG - AFTER CHECKPOINT RESTORATION ===")
logger.debug(f"BEFORE RESTORATION:")
logger.debug(f" Disease parameters - beta: {disease_model.beta}, alpha: {disease_model.alpha}, gamma: {disease_model.gamma}")
logger.debug(f" History lengths - infected: {len(disease_model.infected_history)}, immunity_08: {len(disease_model.immunity_08_history)}")
logger.debug(f" Total global seeds: {disease_model.total_global_seeds}")
# Restore disease parameters
disease_model.beta = disease_data['beta']
disease_model.alpha = disease_data['alpha']
disease_model.gamma = disease_data['gamma']
disease_model.delta_mean = disease_data['delta_mean']
disease_model.delta_std = disease_data['delta_std']
disease_model.max_trans_distance = disease_data['max_trans_distance']
disease_model.p_global_seed = disease_data['p_global_seed']
disease_model.global_seed_min = disease_data['global_seed_min']
disease_model.global_seed_max = disease_data['global_seed_max']
disease_model.global_seed_immunity_threshold = disease_data['global_seed_immunity_threshold']
disease_model.infectiousness_threshold = disease_data['infectiousness_threshold']
# Restore disease history tracking
disease_model.infected_history = disease_data['infected_history']
disease_model.immunity_08_history = disease_data['immunity_08_history']
disease_model.immunity_05_history = disease_data['immunity_05_history']
disease_model.global_seeds_history = disease_data['global_seeds_history']
disease_model.total_global_seeds = disease_data['total_global_seeds']
# Restore transmission kernel
if disease_data['transmission_kernel'] is not None:
disease_model.transmission_kernel = np.array(disease_data['transmission_kernel'], dtype=float)
logger.debug(f"AFTER RESTORATION:")
logger.debug(f" Disease parameters - beta: {disease_model.beta}, alpha: {disease_model.alpha}, gamma: {disease_model.gamma}")
logger.debug(f" Immunity decay - delta_mean: {disease_model.delta_mean}, delta_std: {disease_model.delta_std}")
logger.debug(f" Transmission - max_trans_distance: {disease_model.max_trans_distance}, infectiousness_threshold: {disease_model.infectiousness_threshold}")
logger.debug(f" Global seeding - p_global_seed: {disease_model.p_global_seed}, range: [{disease_model.global_seed_min}, {disease_model.global_seed_max}]")
logger.debug(f" Global seed immunity threshold: {disease_model.global_seed_immunity_threshold}")
# Debug history tracking after restoration
logger.debug(f" Restored history lengths - infected: {len(disease_model.infected_history)}, immunity_08: {len(disease_model.immunity_08_history)}")
logger.debug(f" Restored history lengths - immunity_05: {len(disease_model.immunity_05_history)}, global_seeds: {len(disease_model.global_seeds_history)}")
logger.debug(f" Restored total global seeds: {disease_model.total_global_seeds}")
if disease_model.infected_history:
logger.debug(f" Restored recent infected history (last 5): {disease_model.infected_history[-5:]}")
if disease_model.global_seeds_history:
logger.debug(f" Restored recent global seeds history (last 5): {disease_model.global_seeds_history[-5:]}")
# Debug transmission kernel after restoration
if disease_model.transmission_kernel is not None:
logger.debug(f" Restored transmission kernel shape: {disease_model.transmission_kernel.shape}")
logger.debug(f" Restored transmission kernel sum: {np.sum(disease_model.transmission_kernel):.6f}")
logger.debug(f" Restored transmission kernel max: {np.max(disease_model.transmission_kernel):.6f}")
else:
logger.debug(f" Restored transmission kernel: None")
return True
def _restore_spatial_grid_state(self, rat_manager, spatial_data: Dict[str, Any]) -> bool:
"""Restore spatial grid configuration with debugging
Args:
rat_manager:
spatial_data (Dict[str, Any]):
"""
spatial_grid = rat_manager.spatial_grid
logger.debug(f"=== RAT SPATIAL GRID STATE DEBUG - AFTER CHECKPOINT RESTORATION ===")
logger.debug(f"BEFORE RESTORATION:")
logger.debug(f" Cell size: {spatial_grid.cell_size}, max_trans_distance: {spatial_grid.max_trans_distance}")
logger.debug(f" Movement enabled: {spatial_grid.enable_movement}, p_move: {spatial_grid.p_move}")
# Restore configuration
spatial_grid.cell_size = spatial_data['cell_size']
spatial_grid.max_trans_distance = spatial_data['max_trans_distance']
spatial_grid.enable_movement = spatial_data['enable_movement']
spatial_grid.p_move = spatial_data['p_move']
spatial_grid.lambda_move = spatial_data['lambda_move']
spatial_grid.Rmax_move = spatial_data['Rmax_move']
spatial_grid.grid_cell_size = spatial_data['grid_cell_size']
spatial_grid.grid_cell_rows = spatial_data.get('grid_cell_rows')
spatial_grid.grid_cell_cols = spatial_data.get('grid_cell_cols')
# Restore movement offsets
if spatial_data['move_offsets'] is not None:
spatial_grid.move_offsets = np.array(spatial_data['move_offsets'], dtype=int)
if spatial_data['move_offset_dists'] is not None:
spatial_grid.move_offset_dists = np.array(spatial_data['move_offset_dists'], dtype=int)
logger.debug(f"AFTER RESTORATION:")
logger.debug(f" Restored cell size: {spatial_grid.cell_size}, max_trans_distance: {spatial_grid.max_trans_distance}")
logger.debug(f" Restored movement enabled: {spatial_grid.enable_movement}, p_move: {spatial_grid.p_move}")
logger.debug(f" Restored movement parameters - lambda_move: {spatial_grid.lambda_move}, Rmax_move: {spatial_grid.Rmax_move}")
logger.debug(f" Restored grid cell size: {spatial_grid.grid_cell_size}")
logger.debug(f" Restored grid cell dimensions - rows: {spatial_grid.grid_cell_rows}, cols: {spatial_grid.grid_cell_cols}")
# Debug movement offsets after restoration
if spatial_grid.move_offsets is not None:
logger.debug(f" Restored move offsets shape: {spatial_grid.move_offsets.shape}")
logger.debug(f" Restored move offset distances shape: {spatial_grid.move_offset_dists.shape if spatial_grid.move_offset_dists is not None else 'None'}")
logger.debug(f" First 5 restored move offsets: {spatial_grid.move_offsets[:5].tolist()}")
logger.debug(f" Restored move offset distance range: [{np.min(spatial_grid.move_offset_dists)}, {np.max(spatial_grid.move_offset_dists)}]")
spatial_grid.spatial_grid_array = None
logger.debug(f" Spatial grid array cleared to avoid stale data")
return True
def _restore_area_mapper_state(self, rat_manager, mapper_data: Dict[str, Any]) -> bool:
"""Restore area mapper state
Args:
rat_manager:
mapper_data (Dict[str, Any]):
"""
area_mapper = rat_manager.area_mapper
# Restore basic mappings
area_mapper.area_to_msoa = mapper_data['area_to_msoa']
area_mapper._msoa_mappings_initialised = mapper_data['_msoa_mappings_initialised']
# Restore msoa_to_areas (convert area names back to Area objects)
area_mapper.msoa_to_areas = {}
for msoa_id, area_names in mapper_data['msoa_to_areas'].items():
area_objects = []
for area_name in area_names:
# Find the Area object by name
for super_area in self.simulator.world.super_areas:
for area in super_area.areas:
if hasattr(area, 'name') and area.name == area_name:
area_objects.append(area)
break
if area_objects:
area_mapper.msoa_to_areas[msoa_id] = area_objects
# Restore msoa_to_cells
area_mapper.msoa_to_cells = {}
for msoa_id, cells_list in mapper_data['msoa_to_cells'].items():
if cells_list:
# Convert back to list of tuples with explicit int conversion
area_mapper.msoa_to_cells[msoa_id] = [tuple(int(coord) for coord in cell) for cell in cells_list]
return True
def _restore_tt_event_recorder_state(self, tt_data: Dict[str, Any]) -> bool:
"""Restore TTEventRecorder state including daily/cumulative counters,
unique IDs, current status, and event buffer.
Args:
tt_data (Dict[str, Any]): TTEventRecorder state data
Returns:
bool: True if restoration was successful
"""
print(f"Rank {mpi_rank}: Restoring TTEventRecorder state")
# Check if TTEventRecorder was enabled
if not tt_data.get('enabled', False):
print(f"Rank {mpi_rank}: TTEventRecorder was disabled in checkpoint - skipping restoration")
self.restoration_stats['tt_event_recorder'] = {'enabled': False, 'restored': False}
return True
# TTEventRecorder restoration strategy:
# Store the data for later restoration after TTEventRecorder is naturally created
# This avoids triggering premature TTEventRecorder creation during restoration
print(f"Rank {mpi_rank}: Storing TTEventRecorder data for deferred restoration")
# Store the TTEventRecorder data in the simulator for later restoration
if not hasattr(self.simulator, '_pending_tt_event_recorder_data'):
self.simulator._pending_tt_event_recorder_data = {}
self.simulator._pending_tt_event_recorder_data = tt_data
print(f"Rank {mpi_rank}: TTEventRecorder data stored for restoration after natural creation")
self.restoration_stats['tt_event_recorder'] = {
'enabled': True,
'restored': 'deferred',
'reason': 'stored_for_deferred_restoration',
'note': 'Data will be applied after TTEventRecorder is naturally created'
}
return True
def _log_restoration_summary(self):
"""Log comprehensive restoration summary"""
print(f"\n=== CHECKPOINT RESTORATION SUMMARY (Rank {mpi_rank}) ===")
for component, stats in self.restoration_stats.items():
print(f"\n{component.upper()}:")
for key, value in stats.items():
print(f" {key}: {value}")
print(f"\n=== RESTORATION COMPLETE (Rank {mpi_rank}) ===")
def _get_current_feature_flags(self) -> Dict[str, bool]:
"""Get the current feature flags from the simulator.
Returns:
Dict[str, bool]: Current feature flag states
"""
return {
'test_and_trace_enabled': getattr(self.simulator, 'test_and_trace_enabled', False),
'ratty_dynamics_enabled': getattr(self.simulator, 'ratty_dynamics_enabled', False),
'friend_hangouts_enabled': getattr(self.simulator, 'friend_hangouts_enabled', False)
}
def _detect_feature_activations(self, checkpoint_features: Dict[str, bool], current_features: Dict[str, bool]) -> Dict[str, bool]:
"""Detect which features are newly enabled (were disabled in checkpoint but enabled now).
Args:
checkpoint_features (Dict[str, bool]): Feature flags from the checkpoint
current_features (Dict[str, bool]): Current feature flags
Returns:
Dict[str, bool]: Features that are newly enabled
"""
activations = {}
for feature_name, current_enabled in current_features.items():
checkpoint_enabled = checkpoint_features.get(feature_name, False)
# Feature is newly activated if it's enabled now but was disabled in checkpoint
if current_enabled and not checkpoint_enabled:
activations[feature_name] = True
logger.info(f"Rank {mpi_rank}: Feature '{feature_name}' newly activated (checkpoint: {checkpoint_enabled} -> current: {current_enabled})")
elif current_enabled and checkpoint_enabled:
logger.debug(f"Rank {mpi_rank}: Feature '{feature_name}' remains enabled")
elif not current_enabled and checkpoint_enabled:
logger.info(f"Rank {mpi_rank}: Feature '{feature_name}' disabled (checkpoint: {checkpoint_enabled} -> current: {current_enabled})")
else:
logger.debug(f"Rank {mpi_rank}: Feature '{feature_name}' remains disabled")
return activations
def _validate_feature_activations(self, feature_activations: Dict[str, bool], metadata: Dict[str, Any]) -> Dict[str, Any]:
"""Validate that feature activations are safe and feasible.
Args:
feature_activations (Dict[str, bool]): Features to be activated
metadata (Dict[str, Any]): Checkpoint metadata for context
Returns:
Dict[str, Any]: Validation result with 'valid' boolean and 'reason' if invalid
"""
validation_warnings = []
# Check if simulator has required dependencies for each feature
for feature_name in feature_activations:
if feature_name == 'test_and_trace_enabled':
# Check if disease config supports test and trace
try:
from june.global_context import GlobalContext
disease_config = GlobalContext.get_disease_config()
if disease_config is None:
return {
'valid': False,
'reason': 'No disease configuration available for test and trace initialization'
}
# Check if required policies exist
tracing_policy = disease_config.policy_manager.get_policy_data("tracing")
if not tracing_policy:
validation_warnings.append("No tracing policy found - using defaults")
except Exception as e:
return {
'valid': False,
'reason': f'Error checking test and trace dependencies: {e}'
}
elif feature_name == 'ratty_dynamics_enabled':
# Check if rat dynamics modules are available
try:
from june.zoonosis.rat_manager import RatManager
from june.zoonosis.zoonotic_transmission import ZoonoticTransmission
# Check if world has required attributes for rat dynamics
if not hasattr(self.simulator.world, 'super_areas'):
return {
'valid': False,
'reason': 'World does not have required super_areas for rat dynamics'
}
except ImportError as e:
return {
'valid': False,
'reason': f'Rat dynamics modules not available: {e}'
}
elif feature_name == 'friend_hangouts_enabled':
# Check if leisure system is available
if not hasattr(self.simulator.activity_manager, 'leisure') or self.simulator.activity_manager.leisure is None:
validation_warnings.append("No leisure system available - friend hangouts may have limited functionality")
# Log any warnings
for warning in validation_warnings:
logger.warning(f"Rank {mpi_rank}: Feature activation warning: {warning}")
return {
'valid': True,
'warnings': validation_warnings
}
def _activate_new_features(self, feature_activations: Dict[str, bool]) -> bool:
"""Activate newly enabled features by initializing their components.
Args:
feature_activations (Dict[str, bool]): Features that need to be activated
Returns:
bool: True if all activations were successful
"""
activation_success = True
# Activate test and trace if newly enabled
if feature_activations.get('test_and_trace_enabled'):
print(f"Rank {mpi_rank}: Activating test and trace system...")
success = self._activate_test_and_trace()
activation_success = activation_success and success
if success:
print(f"Rank {mpi_rank}: Test and trace system activated successfully")
else:
logger.error(f"Rank {mpi_rank}: Failed to activate test and trace system")
# Activate rat dynamics if newly enabled
if feature_activations.get('ratty_dynamics_enabled'):
print(f"Rank {mpi_rank}: Activating rat dynamics system...")
success = self._activate_rat_dynamics()
activation_success = activation_success and success
if success:
print(f"Rank {mpi_rank}: Rat dynamics system activated successfully")
else:
logger.error(f"Rank {mpi_rank}: Failed to activate rat dynamics system")
# Activate friend hangouts if newly enabled
if feature_activations.get('friend_hangouts_enabled'):
print(f"Rank {mpi_rank}: Activating friend hangouts system...")
success = self._activate_friend_hangouts()
activation_success = activation_success and success
if success:
print(f"Rank {mpi_rank}: Friend hangouts system activated successfully")
else:
logger.error(f"Rank {mpi_rank}: Failed to activate friend hangouts system")
# Activate sexual encounters if newly enabled
if feature_activations.get('sexual_encounter_enabled'):
print(f"Rank {mpi_rank}: Activating sexual encounter system...")
success = self._activate_sexual_encounters()
activation_success = activation_success and success
if success:
print(f"Rank {mpi_rank}: Sexual encounter system activated successfully")
else:
logger.error(f"Rank {mpi_rank}: Failed to activate sexual encounter system")
return activation_success
def _activate_test_and_trace(self) -> bool:
"""Activate the test and trace system from restoration point.
Returns:
bool: True if activation was successful
"""
try:
# Import required modules
from june.groups.contact import ContactManager
from june.global_context import GlobalContext
# Initialize contact manager
if self.simulator.contact_manager is None:
print(f"Rank {mpi_rank}: Initializing contact manager for test and trace")
self.simulator.contact_manager = ContactManager(self.simulator)
# Configure contact retention based on policy settings
disease_config = GlobalContext.get_disease_config()
if disease_config is not None:
tracing_data = disease_config.policy_manager.get_policy_data("tracing")
self.simulator.contact_retention_days = tracing_data.get("contact_retention_days", 14) if tracing_data else 14
print(f"Rank {mpi_rank}: Contact retention days set to: {self.simulator.contact_retention_days}")
else:
self.simulator.contact_retention_days = 14 # Default
print(f"Rank {mpi_rank}: Using default contact retention days: 14")
# Connect contact manager to leisure system if it exists
if self.simulator.activity_manager.leisure is not None:
print(f"Rank {mpi_rank}: Connecting contact manager to leisure system")
self.simulator.activity_manager.leisure.set_contact_manager(self.simulator.contact_manager)
print(f"Rank {mpi_rank}: Test and trace system activated with fresh contact manager")
return True
else:
print(f"Rank {mpi_rank}: Contact manager already exists")
return True
except Exception as e:
logger.error(f"Rank {mpi_rank}: Error activating test and trace: {e}")
import traceback
traceback.print_exc()
return False
def _activate_rat_dynamics(self) -> bool:
"""Activate the rat dynamics system from restoration point.
Returns:
bool: True if activation was successful
"""
try:
# Import required modules
from june.zoonosis.rat_manager import RatManager
from june.zoonosis.zoonotic_transmission import ZoonoticTransmission
# Initialize rat manager if not already present
if self.simulator.rat_manager is None:
print(f"Rank {mpi_rank}: Initializing rat manager for rat dynamics")
# Use record path for rat density files if available
if self.simulator.record and hasattr(self.simulator.record, 'record_path'):
rat_density_path = str(self.simulator.record.record_path / "rat_density_map.npy")
else:
rat_density_path = "rat_density_map.npy" # Fallback
# Initialize rat manager with fresh state
self.simulator.rat_manager = RatManager(
world=self.simulator.world,
precomputed_density_path=rat_density_path
)
print(f"Rank {mpi_rank}: Rat manager initialized with density path: {rat_density_path}")
# Set animation flag if enabled
# Animation handling removed - now done by post-processing script
print(f"Rank {mpi_rank}: Rat data saving enabled: {getattr(self.simulator, 'save_rat_data', False)}")
else:
print(f"Rank {mpi_rank}: Rat manager already exists")
# Initialize zoonotic transmission if not already present
if self.simulator.zoonotic_transmission is None and ZoonoticTransmission is not None:
print(f"Rank {mpi_rank}: Initializing zoonotic transmission module")
self.simulator.zoonotic_transmission = ZoonoticTransmission(rat_manager=self.simulator.rat_manager)
print(f"Rank {mpi_rank}: Zoonotic transmission module initialized successfully")
print(f"Rank {mpi_rank}: Rat dynamics system activated with fresh state")
return True
except Exception as e:
logger.error(f"Rank {mpi_rank}: Error activating rat dynamics: {e}")
import traceback
traceback.print_exc()
return False
def _activate_friend_hangouts(self) -> bool:
"""Activate the friend hangouts system from restoration point.
Returns:
bool: True if activation was successful
"""
try:
# Friend hangouts activation is primarily handled through the activity manager
# and leisure system. The main requirement is that the feature flag is set,
# which should already be done in the simulator initialization.
print(f"Rank {mpi_rank}: Friend hangouts feature activated")
print(f"Rank {mpi_rank}: Social networks will be built from this point forward")
# The actual friend network building happens dynamically during leisure activities
# No additional initialization is required beyond the feature flag
return True
except Exception as e:
logger.error(f"Rank {mpi_rank}: Error activating friend hangouts: {e}")
return False
def _activate_sexual_encounters(self) -> bool:
"""Activate sexual encounter system for newly enabled feature.
Returns:
bool: True if activation was successful
"""
try:
# Sexual encounters are stateless - just ensure the feature is enabled
self.simulator.sexual_encounter_enabled = True
# Initialize sexual encounter system if it doesn't exist
if not hasattr(self.simulator, 'sexual_encounter') or self.simulator.sexual_encounter is None:
from june.sexual_encounter.sexual_encounter import SexualEncounter
self.simulator.sexual_encounter = SexualEncounter(
private_rooms=getattr(self.simulator, 'private_rooms', None),
contact_manager=getattr(self.simulator, 'contact_manager', None)
)
print(f"Rank {mpi_rank}: Sexual encounter feature activated")
print(f"Rank {mpi_rank}: Sexual encounter system will process invitations from this point forward")
# No additional state needs to be initialized here, as the sexual encounter system
# will handle the creation of private rooms and invitations dynamically.
return True
except Exception as e:
logger.error(f"Rank {mpi_rank}: Error activating sexual encounters: {e}")
return False
def _validate_disease_model_compatibility(self, metadata: Dict[str, Any]) -> bool:
"""Validate that checkpoint disease model matches current disease configuration.
This method checks the disease name stored in checkpoint metadata against the currently
configured disease model to prevent KeyError during simulation.
Args:
metadata (Dict[str, Any]): The loaded checkpoint metadata
Returns:
bool: True if checkpoint disease model is compatible with current config
"""
try:
# Get current disease name from simulator
current_disease_name = None
if (hasattr(self.simulator, 'epidemiology') and
self.simulator.epidemiology and
hasattr(self.simulator.epidemiology, 'infection_selectors') and
self.simulator.epidemiology.infection_selectors._infection_selectors):
current_disease_name = self.simulator.epidemiology.infection_selectors._infection_selectors[0].disease_name
if not current_disease_name:
logger.warning(f"Rank {mpi_rank}: Cannot validate disease compatibility - no disease name found in current config")
return True # Allow restoration to proceed if we can't validate
# Get checkpoint disease name from metadata
checkpoint_disease_name = metadata.get('disease_name')
if not checkpoint_disease_name:
logger.warning(f"Rank {mpi_rank}: No disease name found in checkpoint metadata - checkpoint may be from older version")
return True # Allow restoration for older checkpoints without disease metadata
# Check for mismatch
if checkpoint_disease_name.lower() != current_disease_name.lower():
logger.critical(
f"Rank {mpi_rank}: DISEASE MODEL MISMATCH - Cannot restore checkpoint!\n"
f"Checkpoint disease model: '{checkpoint_disease_name}'\n"
f"Current configuration disease model: '{current_disease_name}'\n"
f"This mismatch would cause KeyError during simulation.\n"
f"Please either:\n"
f" 1) Update your disease model in config from '{current_disease_name}' to '{checkpoint_disease_name}', or\n"
f" 2) Start a fresh simulation without loading checkpoints."
)
return False
logger.info(f"Rank {mpi_rank}: Disease compatibility validated - both checkpoint and config use '{current_disease_name}'")
return True
except Exception as e:
logger.error(f"Rank {mpi_rank}: Error during disease compatibility validation: {e}")
return False
def _restore_school_incident_state(self, school_data: Dict[str, Any]) -> bool:
"""Restore school incident tracking state for NotSendingKidsToSchool policy.
Args:
school_data (Dict[str, Any]): School incident tracking data from checkpoint
Returns:
bool: True if restoration was successful
"""
try:
logger.debug("Starting school incident state restoration")
# Restore local school incident data
if 'local_schools' in school_data:
restored_schools = 0
for school_id_str, incident_data in school_data['local_schools'].items():
# Find the school object by ID (convert string back to original type)
school = None
for s in self.simulator.world.schools:
if str(s.id) == school_id_str:
school = s
break
if school is not None:
school.student_deaths = incident_data.get('student_deaths', 0)
school.student_icu_transfers = incident_data.get('student_icu_transfers', 0)
school.households_avoiding_school = set(incident_data.get('households_avoiding_school', []))
# Convert string keys back to original types for household decision tracking
school.households_last_decision_at_death_count = {int(k): v for k, v in incident_data.get('households_last_decision_at_death_count', {}).items()}
school.households_last_decision_at_icu_count = {int(k): v for k, v in incident_data.get('households_last_decision_at_icu_count', {}).items()}
restored_schools += 1
logger.debug(f"Restored incident data for {restored_schools} local schools")
# Restore global school incidents registry
if 'global_school_incidents' in school_data:
if not hasattr(self.simulator.world, 'global_school_incidents'):
self.simulator.world.global_school_incidents = {}
# Convert string keys back to original types
for school_id_str, incidents in school_data['global_school_incidents'].items():
self.simulator.world.global_school_incidents[int(school_id_str)] = incidents
logger.debug(f"Restored {len(school_data['global_school_incidents'])} global school incidents")
# Restore global household decisions registry
if 'global_household_decisions' in school_data:
if not hasattr(self.simulator.world, 'global_household_decisions'):
self.simulator.world.global_household_decisions = {}
# Convert lists back to sets and string keys back to original types
for school_key_str, decisions in school_data['global_household_decisions'].items():
self.simulator.world.global_household_decisions[school_key_str] = {
'avoiding_households': set(decisions.get('avoiding_households', [])),
'last_death_decision': {int(k): v for k, v in decisions.get('last_death_decision', {}).items()},
'last_icu_decision': {int(k): v for k, v in decisions.get('last_icu_decision', {}).items()}
}
logger.debug(f"Restored {len(school_data['global_household_decisions'])} global household decisions")
self.restoration_stats['school_incidents'] = {
'enabled': True,
'restoration_successful': True
}
logger.debug("School incident state restoration completed successfully")
return True
except Exception as e:
logger.error(f"Rank {mpi_rank}: Error restoring school incident state: {e}")
return False
|