Skip to content

Ethnicity distributor

EthnicityDistributor

Distributor to assign ethnicities to people based on their household composition and area-specific demographic data. Integrates with JUNE's existing distributor pattern.

Source code in june/distributors/ethnicity_distributor.py
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
class EthnicityDistributor:
    """Distributor to assign ethnicities to people based on their household composition
    and area-specific demographic data. Integrates with JUNE's existing distributor pattern.

    """

    def __init__(self):
        """
        Initialize the EthnicityDistributor with configuration and data paths.
        """
        self.script_dir = Path(__file__).parent.parent.parent  # Go up to june-measles root
        self.ethnicity_dir = self.script_dir / "ethnicity_assigner"

        # Load ethnicity assignment configuration
        self._load_config()

        # Cache for loaded data to avoid repeated I/O
        self._data_cache = {}

        # Don't preload data at init - do it when we know which areas we need
        self._data_loaded = False

    def _load_config(self):
        """Load ethnicity assignment configuration"""
        import yaml

        config_path = self.ethnicity_dir / "data" / "config.yaml"
        if config_path.exists():
            with open(config_path, 'r') as f:
                config = yaml.safe_load(f)
        else:
            # Fallback default configuration
            config = {
                'age_thresholds': {
                    'child_max_age': 17,
                    'young_adult_min_age': 18,
                    'young_adult_max_age': 25,
                    'adult_min_age': 26,
                    'adult_max_age': 64,
                    'elderly_min_age': 65
                },
                'age_groups': {
                    'kids': 'kids',
                    'young_adults': 'young_adults',
                    'adults': 'adults',
                    'old_adults': 'old_adults'
                },
                'ethnicity_codes': {
                    'white': 'W',
                    'asian': 'A',
                    'black': 'B',
                    'mixed': 'M',
                    'other': 'O'
                }
            }

        # Store configuration as instance variables
        self.age_thresholds = config['age_thresholds']
        self.age_groups = config['age_groups']
        self.ethnicity_codes = config['ethnicity_codes']

    def _preload_targeted_data(self, area_codes_needed: set):
        """Preload only the ethnicity data needed for the specific areas in this world.

        Args:
            area_codes_needed (set): Set of area codes that exist in this world's households

        """
        logger.info(f"Preloading ethnicity data for {len(area_codes_needed)} areas...")

        # Initialize lookup dictionaries
        self._ethnicity_lookup_ew = {}
        self._ethnicity_lookup_scotland = {}
        self._ethnicity_lookup_ni = {}
        self._diversity_lookup_ew = {}
        self._diversity_lookup_scotland = {}
        self._diversity_lookup_ni = {}
        self._partnership_lookup = {}

        # Separate area codes by region
        ew_areas = {code for code in area_codes_needed if not (code.startswith('S') or code.startswith('N'))}
        scotland_areas = {code for code in area_codes_needed if code.startswith('S')}
        ni_areas = {code for code in area_codes_needed if code.startswith('N')}

        # Load England & Wales ethnicity data (only for needed areas)
        if ew_areas:
            ethnicity_path_ew = self.ethnicity_dir / "data" / "ethnicity_5groups_by_OA.csv"
            if ethnicity_path_ew.exists():
                df = pd.read_csv(ethnicity_path_ew)
                # Filter to only needed areas
                df_filtered = df[df['area'].isin(ew_areas)]
                for _, row in df_filtered.iterrows():
                    area_code = row['area']
                    total = row['total']
                    self._ethnicity_lookup_ew[area_code] = {
                        self.ethnicity_codes['asian']: row['A'] / total,
                        self.ethnicity_codes['black']: row['B'] / total,
                        self.ethnicity_codes['mixed']: row['M'] / total, 
                        self.ethnicity_codes['white']: row['W'] / total,
                        self.ethnicity_codes['other']: row['CO'] / total
                    }
                logger.info(f"Loaded England & Wales ethnicity data: {len(self._ethnicity_lookup_ew)} areas")

        # Load Scotland ethnicity data (only for needed areas)
        if scotland_areas:
            ethnicity_path_scotland = self.ethnicity_dir / "data" / "SCT_ethnicity_5groups_by_OA_standardized.csv"
            if ethnicity_path_scotland.exists():
                df = pd.read_csv(ethnicity_path_scotland)
                # Filter to only needed areas
                df_filtered = df[df['area'].isin(scotland_areas)]
                for _, row in df_filtered.iterrows():
                    area_code = row['area']
                    total = row['total']
                    self._ethnicity_lookup_scotland[area_code] = {
                        self.ethnicity_codes['asian']: row['A'] / total,
                        self.ethnicity_codes['black']: row['B'] / total,
                        self.ethnicity_codes['mixed']: row['M'] / total, 
                        self.ethnicity_codes['white']: row['W'] / total,
                        self.ethnicity_codes['other']: row['CO'] / total
                    }
                logger.info(f"Loaded Scotland ethnicity data: {len(self._ethnicity_lookup_scotland)} areas")

        # Load Northern Ireland ethnicity data (only for needed areas)
        if ni_areas:
            ethnicity_path_ni = self.ethnicity_dir / "data" / "NI_ethnicity_5groups_by_OA_standardized.csv"
            if ethnicity_path_ni.exists():
                df = pd.read_csv(ethnicity_path_ni)
                # Filter to only needed areas
                df_filtered = df[df['area'].isin(ni_areas)]
                for _, row in df_filtered.iterrows():
                    area_code = row['area']
                    total = row['total']
                    self._ethnicity_lookup_ni[area_code] = {
                        self.ethnicity_codes['asian']: row['A'] / total,
                        self.ethnicity_codes['black']: row['B'] / total,
                        self.ethnicity_codes['mixed']: row['M'] / total, 
                        self.ethnicity_codes['white']: row['W'] / total,
                        self.ethnicity_codes['other']: row['CO'] / total
                    }
                logger.info(f"Loaded Northern Ireland ethnicity data: {len(self._ethnicity_lookup_ni)} areas")

        # Load England & Wales diversity data (only for needed areas)
        if ew_areas:
            diversity_path_ew = self.ethnicity_dir / "data" / "combination_ethnicities_in_households_standardized.csv"
            if diversity_path_ew.exists():
                df = pd.read_csv(diversity_path_ew)
                # Filter to only needed areas
                df_filtered = df[df['area'].isin(ew_areas)]
                for _, row in df_filtered.iterrows():
                    area_code = row['area']
                    single_eth = float(row['single_ethnicity'])
                    two_eth = float(row['two_ethnicities'])
                    three_plus_eth = float(row['three_plus_ethnicities'])
                    total_households = single_eth + two_eth + three_plus_eth

                    self._diversity_lookup_ew[area_code] = {
                        'single_ethnicity': single_eth / total_households,
                        'two_ethnicities': two_eth / total_households,
                        'three_plus_ethnicities': three_plus_eth / total_households
                    }
                logger.info(f"Loaded England & Wales diversity data: {len(self._diversity_lookup_ew)} areas")

        # Load Scotland diversity data (only for needed areas)
        if scotland_areas:
            diversity_path_scotland = self.ethnicity_dir / "data" / "SCT_multiple_ethnic_groups_in_household_by_OA_standardized.csv"
            if diversity_path_scotland.exists():
                df = pd.read_csv(diversity_path_scotland)
                # Filter to only needed areas
                df_filtered = df[df['area'].isin(scotland_areas)]
                for _, row in df_filtered.iterrows():
                    area_code = row['area']
                    single_eth = float(row['single_ethnicity'])
                    two_eth = float(row['two_ethnicities'])
                    three_plus_eth = float(row['three_plus_ethnicities'])
                    total_households = single_eth + two_eth + three_plus_eth

                    self._diversity_lookup_scotland[area_code] = {
                        'single_ethnicity': single_eth / total_households,
                        'two_ethnicities': two_eth / total_households,
                        'three_plus_ethnicities': three_plus_eth / total_households
                    }
                logger.info(f"Loaded Scotland diversity data: {len(self._diversity_lookup_scotland)} areas")

        # Load Northern Ireland diversity data (only for needed areas)
        if ni_areas:
            diversity_path_ni = self.ethnicity_dir / "data" / "NI_multiple_ethnic_groups_in_household_by_OA_standardized.csv"
            if diversity_path_ni.exists():
                df = pd.read_csv(diversity_path_ni)
                # Filter to only needed areas
                df_filtered = df[df['area'].isin(ni_areas)]
                for _, row in df_filtered.iterrows():
                    area_code = row['area']
                    single_eth = float(row['single_ethnicity'])
                    two_eth = float(row['two_ethnicities'])
                    three_plus_eth = float(row['three_plus_ethnicities'])
                    total_households = single_eth + two_eth + three_plus_eth

                    self._diversity_lookup_ni[area_code] = {
                        'single_ethnicity': single_eth / total_households,
                        'two_ethnicities': two_eth / total_households,
                        'three_plus_ethnicities': three_plus_eth / total_households
                    }
                logger.info(f"Loaded Northern Ireland diversity data: {len(self._diversity_lookup_ni)} areas")

        # Load partnership data (only for needed areas)
        partnership_path = self.ethnicity_dir / "data" / "precomputed_area_partnerships.csv"
        if partnership_path.exists():
            df = pd.read_csv(partnership_path)
            # Filter to only needed areas
            df_filtered = df[df['area'].isin(area_codes_needed)]
            for _, row in df_filtered.iterrows():
                area_code = row['area']
                first_eth = row['first_ethnicity']

                if area_code not in self._partnership_lookup:
                    self._partnership_lookup[area_code] = {}

                self._partnership_lookup[area_code][first_eth] = {
                    'A': row['prob_A'],
                    'B': row['prob_B'], 
                    'M': row['prob_M'],
                    'W': row['prob_W'],
                    'O': row['prob_O']
                }
            logger.info(f"Loaded partnership data: {len(df_filtered)} partnerships for {len(self._partnership_lookup)} areas")

        logger.info(f"Ethnicity data loading completed: {len(area_codes_needed)} areas processed")

    def assign_ethnicities_to_households(self, households: Households) -> None:
        """Main method to assign ethnicities to all residents in households.

        Args:
            households (Households): The Households supergroup containing all household objects

        """
        logger.info(f"Starting ethnicity assignment for {len(households)} households")

        # First pass: collect all unique area codes that exist in this world
        if not self._data_loaded:
            logger.info("Collecting area codes from households...")
            area_codes_needed = set()
            for household in households:
                area_code = self._get_area_code(household)
                if area_code:
                    area_codes_needed.add(area_code)

            logger.info(f"Found {len(area_codes_needed)} unique areas, loading relevant data...")
            self._preload_targeted_data(area_codes_needed)
            self._data_loaded = True

        total_people_assigned = 0
        areas_processed = set()

        for i, household in enumerate(households):
            if i % 1000 == 0 and i > 0:
                logger.info(f"Processed {i:,} households, assigned ethnicities to {total_people_assigned:,} people")

            if household.residents:
                # Get area code for this household
                area_code = self._get_area_code(household)
                areas_processed.add(area_code)

                # Assign ethnicities to all residents
                assignments = self._assign_household_ethnicities(household, area_code)

                # Apply assignments to Person objects
                for person in household.residents:
                    if hasattr(person, 'id') and str(person.id) in assignments:
                        person.ethnicity = assignments[str(person.id)]
                        total_people_assigned += 1

        logger.info(f"Completed ethnicity assignment: {total_people_assigned:,} people assigned across {len(areas_processed)} unique areas")

        # Show sample of assignments
        self._display_sample_assignments(households, total_people_assigned)

    def assign_ethnicities_to_care_homes(self, care_homes) -> None:
        """Assign ethnicities to care home residents based on area demographics.

        Args:
            care_homes (CareHomes or similar supergroup): The care homes supergroup containing all care home objects

        """
        if not care_homes:
            return

        logger.info(f"Starting ethnicity assignment for care home residents...")

        total_people_assigned = 0

        for care_home in care_homes:
            if hasattr(care_home, 'residents') and care_home.residents:
                # Get area code for this care home
                area_code = self._get_area_code_from_venue(care_home)

                # Get area ethnicity probabilities
                if area_code:
                    area_probs = self._load_area_ethnicity_probabilities(area_code)
                else:
                    # Fallback probabilities for elderly
                    area_probs = {
                        self.ethnicity_codes['white']: 0.85,
                        self.ethnicity_codes['asian']: 0.08,
                        self.ethnicity_codes['black']: 0.04,
                        self.ethnicity_codes['mixed']: 0.02,
                        self.ethnicity_codes['other']: 0.01
                    }
                    # Normalize probabilities to ensure they sum to 1.0
                    area_probs = self._normalize_probabilities(area_probs)

                # Assign ethnicity to each resident
                for person in care_home.residents:
                    ethnicity = np.random.choice(
                        list(area_probs.keys()),
                        p=list(area_probs.values())
                    )
                    person.ethnicity = ethnicity
                    total_people_assigned += 1

        logger.info(f"Completed care home ethnicity assignment: {total_people_assigned:,} people assigned")

    def assign_ethnicities_to_boarding_schools(self, boarding_schools) -> None:
        """Assign ethnicities to boarding school residents based on area demographics.

        Args:
            boarding_schools (BoardingSchools or similar supergroup): The boarding schools supergroup containing all boarding school objects

        """
        if not boarding_schools:
            return

        logger.info(f"Starting ethnicity assignment for boarding school residents...")

        total_people_assigned = 0

        for boarding_school in boarding_schools:
            if hasattr(boarding_school, 'residents') and boarding_school.residents:
                # Get area code for this boarding school
                area_code = self._get_area_code_from_venue(boarding_school)

                # Get area ethnicity probabilities
                if area_code:
                    area_probs = self._load_area_ethnicity_probabilities(area_code)
                else:
                    # Fallback probabilities for young people
                    area_probs = {
                        self.ethnicity_codes['white']: 0.75,
                        self.ethnicity_codes['asian']: 0.12,
                        self.ethnicity_codes['black']: 0.07,
                        self.ethnicity_codes['mixed']: 0.04,
                        self.ethnicity_codes['other']: 0.02
                    }
                    # Normalize probabilities to ensure they sum to 1.0
                    area_probs = self._normalize_probabilities(area_probs)

                # Assign ethnicity to each resident
                for person in boarding_school.residents:
                    ethnicity = np.random.choice(
                        list(area_probs.keys()),
                        p=list(area_probs.values())
                    )
                    person.ethnicity = ethnicity
                    total_people_assigned += 1

        logger.info(f"Completed boarding school ethnicity assignment: {total_people_assigned:,} people assigned")

    def assign_ethnicities_to_student_dorms(self, student_dorms) -> None:
        """Assign ethnicities to student dorm residents based on area demographics.

        Args:
            student_dorms (StudentDorms or similar supergroup): The student dorms supergroup containing all student dorm objects

        """
        if not student_dorms:
            return

        logger.info(f"Starting ethnicity assignment for student dorm residents...")

        total_people_assigned = 0

        for student_dorm in student_dorms:
            if hasattr(student_dorm, 'residents') and student_dorm.residents:
                # Get area code for this student dorm
                area_code = self._get_area_code_from_venue(student_dorm)

                # Get area ethnicity probabilities
                if area_code:
                    area_probs = self._load_area_ethnicity_probabilities(area_code)
                else:
                    # Fallback probabilities for young adults
                    area_probs = {
                        self.ethnicity_codes['white']: 0.70,
                        self.ethnicity_codes['asian']: 0.15,
                        self.ethnicity_codes['black']: 0.08,
                        self.ethnicity_codes['mixed']: 0.05,
                        self.ethnicity_codes['other']: 0.02
                    }
                    # Normalize probabilities to ensure they sum to 1.0
                    area_probs = self._normalize_probabilities(area_probs)

                # Assign ethnicity to each resident
                for person in student_dorm.residents:
                    ethnicity = np.random.choice(
                        list(area_probs.keys()),
                        p=list(area_probs.values())
                    )
                    person.ethnicity = ethnicity
                    total_people_assigned += 1

        logger.info(f"Completed student dorm ethnicity assignment: {total_people_assigned:,} people assigned")

    def assign_ethnicities_to_all_residents(self, world) -> None:
        """Comprehensive method to assign ethnicities to all residents in the world.

        Args:
            world (World): The world object containing all groups

        """
        logger.info("Starting comprehensive ethnicity assignment for all residents...")

        # Households (relationship-aware assignment)
        if world.households is not None:
            self.assign_ethnicities_to_households(world.households)

        # Care homes (area-based assignment)
        if world.care_homes is not None:
            self.assign_ethnicities_to_care_homes(world.care_homes)

        # Boarding schools (area-based assignment)
        if hasattr(world, 'boarding_schools') and world.boarding_schools is not None:
            self.assign_ethnicities_to_boarding_schools(world.boarding_schools)

        # Student dorms (area-based assignment)
        if world.student_dorms is not None:
            self.assign_ethnicities_to_student_dorms(world.student_dorms)

        logger.info("Completed comprehensive ethnicity assignment for all residents")

    def _normalize_probabilities(self, probabilities: Dict[str, float]) -> Dict[str, float]:
        """Normalize probabilities to ensure they sum to 1.0.

        Args:
            probabilities (Dict[str, float]): Dictionary of probabilities

        Returns:
            Dict[str, float]: Normalized probabilities that sum to 1.0

        """
        total = sum(probabilities.values())
        if abs(total - 1.0) < 1e-10:  # Already normalized within floating point precision
            return probabilities
        elif total > 0:
            # Normalize to sum to 1.0
            return {key: value / total for key, value in probabilities.items()}
        else:
            # All probabilities are zero - return equal probabilities
            n = len(probabilities)
            return {key: 1.0 / n for key in probabilities.keys()}

    def _get_area_code_from_venue(self, venue) -> Optional[str]:
        """Extract area code from any venue (care home, boarding school, student dorm, etc.).

        Args:
            venue (object): The venue object (care home, boarding school, student dorm, etc.)

        Returns:
            str or None: The area code if available

        """
        # Try different possible attributes for area information
        if hasattr(venue, 'area') and venue.area:
            if hasattr(venue.area, 'name'):
                return venue.area.name
            elif hasattr(venue.area, 'id'):
                return str(venue.area.id)

        # Try direct area_code attribute
        if hasattr(venue, 'area_code'):
            return venue.area_code

        # Try coordinates-based lookup if available
        if hasattr(venue, 'coordinates') and venue.coordinates:
            # This would require reverse geocoding - for now return None
            pass

        return None

    def _get_area_code(self, household: Household) -> Optional[str]:
        """Extract area code from household for demographic data lookup.

        Args:
            household (Household): The household object

        Returns:
            str or None: The area code if available

        """
        if hasattr(household, 'area') and household.area:
            if hasattr(household.area, 'name'):
                return household.area.name
            elif hasattr(household.area, 'id'):
                return str(household.area.id)
        return None

    def _classify_person_by_age(self, person: Person) -> str:
        """Classify person into age group based on age thresholds.

        Args:
            person (Person): The person to classify

        Returns:
            str: Age group classification

        """
        age = person.age

        if age <= self.age_thresholds['child_max_age']:
            return self.age_groups['kids']
        elif self.age_thresholds['young_adult_min_age'] <= age <= self.age_thresholds['young_adult_max_age']:
            return self.age_groups['young_adults']
        elif self.age_thresholds['adult_min_age'] <= age <= self.age_thresholds['adult_max_age']:
            return self.age_groups['adults']
        else:
            return self.age_groups['old_adults']

    def _categorize_household_members(self, household: Household) -> Dict[str, List[Person]]:
        """Categorize household residents by age group.

        Args:
            household (Household): The household object

        Returns:
            Dict[str, List[Person]]: Dictionary mapping age groups to lists of people

        """
        categories = {
            self.age_groups['kids']: [],
            self.age_groups['young_adults']: [],
            self.age_groups['adults']: [],
            self.age_groups['old_adults']: []
        }

        for person in household.residents:
            age_group = self._classify_person_by_age(person)
            categories[age_group].append(person)

        return categories

    def _assign_household_ethnicities(self, household: Household, area_code: Optional[str]) -> Dict[str, str]:
        """Assign ethnicities to all residents in a single household.

        Args:
            household (Household): The household object
            area_code (Optional[str]): Area code for demographic data lookup

        Returns:
            Dict[str, str]: Mapping of person IDs to ethnicity codes

        """
        # Categorize household members by age group
        categories = self._categorize_household_members(household)

        adults = categories[self.age_groups['adults']]
        young_adults = categories[self.age_groups['young_adults']]
        kids = categories[self.age_groups['kids']]
        elderly = categories[self.age_groups['old_adults']]

        # Determine who acts as adults for assignment purposes
        if len(adults) == 0 and len(young_adults) > 0:
            # Young adults living independently
            adults_for_assignment = young_adults
            children = kids  # Only actual children inherit
        else:
            # Normal household
            adults_for_assignment = adults
            children = kids + young_adults  # Both inherit from adults

        assignments = {}

        # Assign adult ethnicities first
        adult_assignments = self._assign_adult_ethnicities(adults_for_assignment, area_code)
        assignments.update(adult_assignments)

        # Assign children based on adults
        children_assignments = self._assign_children_ethnicities(children, adult_assignments)
        assignments.update(children_assignments)

        # Assign elderly based on relationship to adults
        elderly_assignments = self._assign_elderly_ethnicities(elderly, adult_assignments, area_code)
        assignments.update(elderly_assignments)

        return assignments

    def _load_area_ethnicity_probabilities(self, area_code: str) -> Dict[str, float]:
        """Load area-specific ethnicity probabilities with caching.
        Uses preloaded data for optimal performance.

        Args:
            area_code (str): The area code

        Returns:
            Dict[str, float]: Mapping of ethnicity codes to probabilities

        """
        cache_key = f"ethnicity_{area_code}"
        if cache_key in self._data_cache:
            return self._data_cache[cache_key]

        try:
            # Detect region: Scotland (S), Northern Ireland (N), or England & Wales (E)
            is_scotland = area_code.startswith('S')
            is_ni = area_code.startswith('N')

            if is_scotland:
                lookup_dict = self._ethnicity_lookup_scotland
                fallback_probs = {
                    self.ethnicity_codes['white']: 0.90,
                    self.ethnicity_codes['asian']: 0.05, 
                    self.ethnicity_codes['black']: 0.02,
                    self.ethnicity_codes['mixed']: 0.02,
                    self.ethnicity_codes['other']: 0.01
                }
            elif is_ni:
                lookup_dict = self._ethnicity_lookup_ni
                fallback_probs = {
                    self.ethnicity_codes['white']: 0.92,
                    self.ethnicity_codes['asian']: 0.04, 
                    self.ethnicity_codes['black']: 0.01,
                    self.ethnicity_codes['mixed']: 0.02,
                    self.ethnicity_codes['other']: 0.01
                }
            else:
                lookup_dict = self._ethnicity_lookup_ew
                fallback_probs = {
                    self.ethnicity_codes['white']: 0.81,
                    self.ethnicity_codes['asian']: 0.09, 
                    self.ethnicity_codes['black']: 0.04,
                    self.ethnicity_codes['mixed']: 0.03,
                    self.ethnicity_codes['other']: 0.03  # Fixed: was 0.02, now sums to 1.0
                }

            # Use O(1) dictionary lookup instead of DataFrame filtering
            probabilities = lookup_dict.get(area_code, fallback_probs)

            # Normalize probabilities to ensure they sum to 1.0
            probabilities = self._normalize_probabilities(probabilities)

            self._data_cache[cache_key] = probabilities
            return probabilities

        except Exception as e:
            logger.warning(f"Error loading ethnicity data for {area_code}: {e}. Using fallback probabilities")
            # Fallback probabilities
            fallback = {
                self.ethnicity_codes['white']: 0.81,
                self.ethnicity_codes['asian']: 0.09,
                self.ethnicity_codes['black']: 0.04,
                self.ethnicity_codes['mixed']: 0.03,
                self.ethnicity_codes['other']: 0.03  # Fixed: was 0.02, now sums to 1.0
            }
            # Normalize fallback probabilities to ensure they sum to 1.0
            fallback = self._normalize_probabilities(fallback)
            self._data_cache[cache_key] = fallback
            return fallback

    def _load_area_diversity_data(self, area_code: str) -> Dict[str, float]:
        """Load area-specific household diversity data with caching.
        Uses preloaded data for optimal performance.

        Args:
            area_code (str): The area code

        Returns:
            Dict[str, float]: Mapping of diversity categories to probabilities

        """
        cache_key = f"diversity_{area_code}"
        if cache_key in self._data_cache:
            return self._data_cache[cache_key]

        try:
            # Detect region: Scotland (S), Northern Ireland (N), or England & Wales (E)
            is_scotland = area_code.startswith('S')
            is_ni = area_code.startswith('N')

            if is_scotland:
                lookup_dict = self._diversity_lookup_scotland
                fallback_diversity = {
                    'single_ethnicity': 0.88,
                    'two_ethnicities': 0.10,  
                    'three_plus_ethnicities': 0.02
                }
            elif is_ni:
                lookup_dict = self._diversity_lookup_ni
                fallback_diversity = {
                    'single_ethnicity': 0.90,
                    'two_ethnicities': 0.08,  
                    'three_plus_ethnicities': 0.02
                }
            else:
                lookup_dict = self._diversity_lookup_ew
                fallback_diversity = {
                    'single_ethnicity': 0.85,
                    'two_ethnicities': 0.12,  
                    'three_plus_ethnicities': 0.03
                }

            # Use O(1) dictionary lookup instead of DataFrame filtering
            diversity = lookup_dict.get(area_code, fallback_diversity)

            # Normalize diversity probabilities to ensure they sum to 1.0
            diversity = self._normalize_probabilities(diversity)

            self._data_cache[cache_key] = diversity
            return diversity

        except Exception as e:
            logger.warning(f"Error loading diversity data for {area_code}: {e}. Using fallback diversity")
            fallback = {
                'single_ethnicity': 0.85,
                'two_ethnicities': 0.12,
                'three_plus_ethnicities': 0.03
            }
            # Normalize fallback diversity probabilities to ensure they sum to 1.0
            fallback = self._normalize_probabilities(fallback)
            self._data_cache[cache_key] = fallback
            return fallback

    def _load_partnership_probabilities(self, area_code: str) -> Dict[str, Dict[str, float]]:
        """Load area-specific partnership probabilities with caching.
        Uses preloaded data for optimal performance.

        Args:
            area_code (str): The area code

        Returns:
            Dict[str, Dict[str, float]]: Nested mapping of first ethnicity to partner ethnicity probabilities

        """
        cache_key = f"partnerships_{area_code}"
        if cache_key in self._data_cache:
            return self._data_cache[cache_key]

        try:            
            # Use O(1) dictionary lookup instead of DataFrame filtering
            partnerships = self._partnership_lookup.get(area_code, {})

            if partnerships:
                # Normalize partnership probabilities for each first ethnicity
                normalized_partnerships = {}
                for first_eth, partner_probs in partnerships.items():
                    normalized_partnerships[first_eth] = self._normalize_probabilities(partner_probs)
                self._data_cache[cache_key] = normalized_partnerships
                return normalized_partnerships

            # Fallback if no data available
            ethnicity_codes = list(self.ethnicity_codes.values())
            equal_prob = 1.0 / len(ethnicity_codes)
            fallback = {}
            for eth1 in ethnicity_codes:
                fallback[eth1] = {eth2: equal_prob for eth2 in ethnicity_codes}

            self._data_cache[cache_key] = fallback
            return fallback

        except Exception as e:
            logger.warning(f"Error loading partnership data for {area_code}: {e}. Using fallback partnerships")
            # Fallback - equal probability for all ethnicities
            ethnicity_codes = list(self.ethnicity_codes.values())
            equal_prob = 1.0 / len(ethnicity_codes)
            fallback = {}
            for eth1 in ethnicity_codes:
                fallback[eth1] = {eth2: equal_prob for eth2 in ethnicity_codes}
            self._data_cache[cache_key] = fallback
            return fallback

    def _assign_adult_ethnicities(self, adults: List[Person], area_code: Optional[str]) -> Dict[str, str]:
        """Assign ethnicities to adults in the household.

        Args:
            adults (List[Person]): List of adult persons
            area_code (Optional[str]): Area code for demographic lookup

        Returns:
            Dict[str, str]: Mapping of person IDs to ethnicity codes

        """
        if not adults:
            return {}

        assignments = {}

        # Get area-specific probabilities
        if area_code:
            adult_probs = self._load_area_ethnicity_probabilities(area_code)
        else:
            # Use default UK probabilities
            adult_probs = {
                self.ethnicity_codes['white']: 0.81,
                self.ethnicity_codes['asian']: 0.09,
                self.ethnicity_codes['black']: 0.04,
                self.ethnicity_codes['mixed']: 0.03,
                self.ethnicity_codes['other']: 0.03  # Fixed: was 0.02, now sums to 1.0
            }
            # Normalize probabilities to ensure they sum to 1.0
            adult_probs = self._normalize_probabilities(adult_probs)

        # Assign first adult based on area probabilities
        first_adult = adults[0]
        first_ethnicity = np.random.choice(
            list(adult_probs.keys()),
            p=list(adult_probs.values())
        )
        assignments[str(first_adult.id)] = first_ethnicity

        # For multiple adults, use area diversity to decide mixed vs single ethnicity
        if len(adults) > 1 and area_code:
            diversity_data = self._load_area_diversity_data(area_code)

            rand = np.random.random()
            if rand < diversity_data['single_ethnicity']:
                # Single ethnicity household
                for adult in adults[1:]:
                    assignments[str(adult.id)] = first_ethnicity
            else:
                # Mixed ethnicity household - use partnership probabilities
                partnerships = self._load_partnership_probabilities(area_code)
                partner_probs = partnerships.get(first_ethnicity, {})

                for adult in adults[1:]:
                    if partner_probs:
                        partner_options = list(partner_probs.keys())
                        partner_probabilities = list(partner_probs.values())
                        ethnicity = np.random.choice(partner_options, p=partner_probabilities)
                    else:
                        # Fallback to area probabilities
                        ethnicity = np.random.choice(
                            list(adult_probs.keys()),
                            p=list(adult_probs.values())
                        )
                    assignments[str(adult.id)] = ethnicity
        else:
            # Single adult or no area code - use area probabilities for remaining adults
            for adult in adults[1:]:
                ethnicity = np.random.choice(
                    list(adult_probs.keys()),
                    p=list(adult_probs.values())
                )
                assignments[str(adult.id)] = ethnicity

        return assignments

    def _assign_children_ethnicities(self, children: List[Person], adult_assignments: Dict[str, str]) -> Dict[str, str]:
        """Assign ethnicities to children based on adult ethnicities.

        Args:
            children (List[Person]): List of children/young adults
            adult_assignments (Dict[str, str]): Adult ethnicity assignments

        Returns:
            Dict[str, str]: Mapping of person IDs to ethnicity codes

        """
        if not children:
            return {}

        assignments = {}
        parent_ethnicities = list(adult_assignments.values())

        # Determine child ethnicity based on parent ethnicities
        if len(parent_ethnicities) == 0:
            # No adults - shouldn't happen, but handle gracefully
            child_ethnicity = self.ethnicity_codes['white']  # Default fallback
        elif len(parent_ethnicities) == 1:
            child_ethnicity = parent_ethnicities[0]
        elif len(set(parent_ethnicities)) == 1:
            # All parents same ethnicity
            child_ethnicity = parent_ethnicities[0]
        else:
            # Mixed ethnicity parents
            child_ethnicity = self.ethnicity_codes['mixed']

        # Assign same ethnicity to all children
        for child in children:
            assignments[str(child.id)] = child_ethnicity

        return assignments

    def _assign_elderly_ethnicities(self, elderly: List[Person], adult_assignments: Dict[str, str], area_code: Optional[str]) -> Dict[str, str]:
        """Assign ethnicities to elderly based on relationship to adults.

        Args:
            elderly (List[Person]): List of elderly persons
            adult_assignments (Dict[str, str]): Adult ethnicity assignments
            area_code (Optional[str]): Area code for demographic lookup

        Returns:
            Dict[str, str]: Mapping of person IDs to ethnicity codes

        """
        if not elderly:
            return {}

        assignments = {}
        adult_ethnicities = list(adult_assignments.values())

        # Handle elderly-only households (no adults present)
        if not adult_ethnicities:
            if area_code:
                elderly_probs = self._load_area_ethnicity_probabilities(area_code)
            else:
                elderly_probs = {
                    self.ethnicity_codes['white']: 0.85,
                    self.ethnicity_codes['asian']: 0.08,
                    self.ethnicity_codes['black']: 0.04,
                    self.ethnicity_codes['mixed']: 0.02,
                    self.ethnicity_codes['other']: 0.01
                }
                # Normalize probabilities to ensure they sum to 1.0
                elderly_probs = self._normalize_probabilities(elderly_probs)

            if len(elderly) == 2:
                # Elderly couple - use same logic as adult couples
                elder1, elder2 = elderly[0], elderly[1]

                # Assign first elderly person
                first_ethnicity = np.random.choice(
                    list(elderly_probs.keys()),
                    p=list(elderly_probs.values())
                )
                assignments[str(elder1.id)] = first_ethnicity

                # Decide if couple should be mixed using area diversity
                if area_code:
                    diversity_data = self._load_area_diversity_data(area_code)
                    if np.random.random() < diversity_data['single_ethnicity']:
                        assignments[str(elder2.id)] = first_ethnicity
                    else:
                        partnerships = self._load_partnership_probabilities(area_code)
                        partner_probs = partnerships.get(first_ethnicity, {})
                        if partner_probs:
                            partner_options = list(partner_probs.keys())
                            partner_probabilities = list(partner_probs.values())
                            partner_ethnicity = np.random.choice(partner_options, p=partner_probabilities)
                        else:
                            partner_ethnicity = np.random.choice(
                                list(elderly_probs.keys()),
                                p=list(elderly_probs.values())
                            )
                        assignments[str(elder2.id)] = partner_ethnicity
                else:
                    # No area data - assign second elderly independently
                    second_ethnicity = np.random.choice(
                        list(elderly_probs.keys()),
                        p=list(elderly_probs.values())
                    )
                    assignments[str(elder2.id)] = second_ethnicity
            else:
                # Single elderly or 3+ elderly - assign independently
                for elderly_person in elderly:
                    ethnicity = np.random.choice(
                        list(elderly_probs.keys()),
                        p=list(elderly_probs.values())
                    )
                    assignments[str(elderly_person.id)] = ethnicity

        elif len(elderly) == 1:
            # Single elderly = parent of one of the adults
            elderly_person = elderly[0]
            parent_ethnicity = np.random.choice(adult_ethnicities)
            assignments[str(elderly_person.id)] = parent_ethnicity

        elif len(elderly) == 2:
            # Elderly couple = parents/grandparents
            elder1, elder2 = elderly[0], elderly[1]

            # Check if any adults are Mixed (indicates inter-ethnic parents)
            if self.ethnicity_codes['mixed'] in adult_ethnicities:
                # Mixed adult means parents had different ethnicities
                possible_combinations = [
                    (self.ethnicity_codes['white'], self.ethnicity_codes['asian']),
                    (self.ethnicity_codes['white'], self.ethnicity_codes['black']),
                    (self.ethnicity_codes['asian'], self.ethnicity_codes['black']),
                    (self.ethnicity_codes['white'], self.ethnicity_codes['mixed']),
                    (self.ethnicity_codes['asian'], self.ethnicity_codes['mixed']),
                    (self.ethnicity_codes['black'], self.ethnicity_codes['mixed'])
                ]
                parent_combo = possible_combinations[np.random.randint(len(possible_combinations))]
                assignments[str(elder1.id)] = parent_combo[0]
                assignments[str(elder2.id)] = parent_combo[1]
            else:
                # No Mixed adults
                unique_adult_ethnicities = list(set(adult_ethnicities))

                if len(unique_adult_ethnicities) == 1:
                    # All adults same ethnicity
                    ethnicity = unique_adult_ethnicities[0]
                    assignments[str(elder1.id)] = ethnicity
                    assignments[str(elder2.id)] = ethnicity
                else:
                    # Multiple adult ethnicities
                    assignments[str(elder1.id)] = unique_adult_ethnicities[0]
                    assignments[str(elder2.id)] = unique_adult_ethnicities[1] if len(unique_adult_ethnicities) > 1 else unique_adult_ethnicities[0]

        else:
            # More than 2 elderly - assign based on adult ethnicities
            for i, elderly_person in enumerate(elderly):
                if i < len(adult_ethnicities):
                    assignments[str(elderly_person.id)] = adult_ethnicities[i]
                else:
                    assignments[str(elderly_person.id)] = np.random.choice(adult_ethnicities)

        return assignments

    def _display_sample_assignments(self, households: Households, total_assigned: int) -> None:
        """Display a sample of ethnicity assignments similar to other JUNE distributors.

        Args:
            households (Households): The households with assigned ethnicities
            total_assigned (int): Total number of people assigned ethnicities

        """
        import random

        print("\n===== Sample of Ethnicity Assignments =====")

        # Collect sample households with residents
        sample_households = []
        for household in households:
            if household.residents and len(household.residents) > 0:
                sample_households.append(household)

        if not sample_households:
            print("No households with residents found for sampling")
            return

        # Show sample of up to 10 households
        sample_size = min(10, len(sample_households))
        sample_households = random.sample(sample_households, sample_size)

        for i, household in enumerate(sample_households, 1):
            area_code = self._get_area_code(household)
            print(f"\nHousehold {i} (Area: {area_code or 'Unknown'}):")

            # Show household composition and ethnicities
            for person in household.residents:
                age_group = self._classify_person_by_age(person)
                ethnicity = getattr(person, 'ethnicity', 'Unassigned')
                print(f"  Person {person.id}: Age {person.age:2d} ({person.sex}) | {age_group:12s} | Ethnicity: {ethnicity}")

            # Show household diversity
            ethnicities = [getattr(person, 'ethnicity', 'Unassigned') for person in household.residents]
            unique_ethnicities = set(ethnicities)
            diversity_type = "Single ethnicity" if len(unique_ethnicities) == 1 else f"Mixed ({len(unique_ethnicities)} ethnicities)"
            print(f"  → Household type: {diversity_type}")

        # Show overall statistics
        print(f"\n===== Ethnicity Assignment Statistics =====")

        # Count ethnicities across all people
        ethnicity_counts = {}
        household_types = {"Single ethnicity": 0, "Mixed": 0}

        for household in households:
            if household.residents:
                # Count individual ethnicities
                for person in household.residents:
                    ethnicity = getattr(person, 'ethnicity', 'Unassigned')
                    ethnicity_counts[ethnicity] = ethnicity_counts.get(ethnicity, 0) + 1

                # Count household types
                household_ethnicities = set(getattr(person, 'ethnicity', 'Unassigned') for person in household.residents)
                if len(household_ethnicities) == 1:
                    household_types["Single ethnicity"] += 1
                else:
                    household_types["Mixed"] += 1

        print(f"Total people assigned ethnicities: {total_assigned:,}")
        print(f"Ethnicity distribution:")

        # Show ethnicity counts
        ethnicity_names = {
            'W': 'White',
            'A': 'Asian/Asian British', 
            'B': 'Black/African/Caribbean/Black British',
            'M': 'Mixed/Multiple ethnic groups',
            'O': 'Other ethnic group'
        }

        for code, count in sorted(ethnicity_counts.items()):
            name = ethnicity_names.get(code, code)
            percentage = (count / total_assigned * 100) if total_assigned > 0 else 0
            print(f"  {name}: {count:,} ({percentage:.1f}%)")

        # Show household diversity statistics
        total_households = sum(household_types.values())
        print(f"\nHousehold diversity:")
        for htype, count in household_types.items():
            percentage = (count / total_households * 100) if total_households > 0 else 0
            print(f"  {htype}: {count:,} ({percentage:.1f}%)")

        print("="*50)

__init__()

Initialize the EthnicityDistributor with configuration and data paths.

Source code in june/distributors/ethnicity_distributor.py
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
def __init__(self):
    """
    Initialize the EthnicityDistributor with configuration and data paths.
    """
    self.script_dir = Path(__file__).parent.parent.parent  # Go up to june-measles root
    self.ethnicity_dir = self.script_dir / "ethnicity_assigner"

    # Load ethnicity assignment configuration
    self._load_config()

    # Cache for loaded data to avoid repeated I/O
    self._data_cache = {}

    # Don't preload data at init - do it when we know which areas we need
    self._data_loaded = False

assign_ethnicities_to_all_residents(world)

Comprehensive method to assign ethnicities to all residents in the world.

Parameters:

Name Type Description Default
world World

The world object containing all groups

required
Source code in june/distributors/ethnicity_distributor.py
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
def assign_ethnicities_to_all_residents(self, world) -> None:
    """Comprehensive method to assign ethnicities to all residents in the world.

    Args:
        world (World): The world object containing all groups

    """
    logger.info("Starting comprehensive ethnicity assignment for all residents...")

    # Households (relationship-aware assignment)
    if world.households is not None:
        self.assign_ethnicities_to_households(world.households)

    # Care homes (area-based assignment)
    if world.care_homes is not None:
        self.assign_ethnicities_to_care_homes(world.care_homes)

    # Boarding schools (area-based assignment)
    if hasattr(world, 'boarding_schools') and world.boarding_schools is not None:
        self.assign_ethnicities_to_boarding_schools(world.boarding_schools)

    # Student dorms (area-based assignment)
    if world.student_dorms is not None:
        self.assign_ethnicities_to_student_dorms(world.student_dorms)

    logger.info("Completed comprehensive ethnicity assignment for all residents")

assign_ethnicities_to_boarding_schools(boarding_schools)

Assign ethnicities to boarding school residents based on area demographics.

Parameters:

Name Type Description Default
boarding_schools BoardingSchools or similar supergroup

The boarding schools supergroup containing all boarding school objects

required
Source code in june/distributors/ethnicity_distributor.py
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
def assign_ethnicities_to_boarding_schools(self, boarding_schools) -> None:
    """Assign ethnicities to boarding school residents based on area demographics.

    Args:
        boarding_schools (BoardingSchools or similar supergroup): The boarding schools supergroup containing all boarding school objects

    """
    if not boarding_schools:
        return

    logger.info(f"Starting ethnicity assignment for boarding school residents...")

    total_people_assigned = 0

    for boarding_school in boarding_schools:
        if hasattr(boarding_school, 'residents') and boarding_school.residents:
            # Get area code for this boarding school
            area_code = self._get_area_code_from_venue(boarding_school)

            # Get area ethnicity probabilities
            if area_code:
                area_probs = self._load_area_ethnicity_probabilities(area_code)
            else:
                # Fallback probabilities for young people
                area_probs = {
                    self.ethnicity_codes['white']: 0.75,
                    self.ethnicity_codes['asian']: 0.12,
                    self.ethnicity_codes['black']: 0.07,
                    self.ethnicity_codes['mixed']: 0.04,
                    self.ethnicity_codes['other']: 0.02
                }
                # Normalize probabilities to ensure they sum to 1.0
                area_probs = self._normalize_probabilities(area_probs)

            # Assign ethnicity to each resident
            for person in boarding_school.residents:
                ethnicity = np.random.choice(
                    list(area_probs.keys()),
                    p=list(area_probs.values())
                )
                person.ethnicity = ethnicity
                total_people_assigned += 1

    logger.info(f"Completed boarding school ethnicity assignment: {total_people_assigned:,} people assigned")

assign_ethnicities_to_care_homes(care_homes)

Assign ethnicities to care home residents based on area demographics.

Parameters:

Name Type Description Default
care_homes CareHomes or similar supergroup

The care homes supergroup containing all care home objects

required
Source code in june/distributors/ethnicity_distributor.py
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
def assign_ethnicities_to_care_homes(self, care_homes) -> None:
    """Assign ethnicities to care home residents based on area demographics.

    Args:
        care_homes (CareHomes or similar supergroup): The care homes supergroup containing all care home objects

    """
    if not care_homes:
        return

    logger.info(f"Starting ethnicity assignment for care home residents...")

    total_people_assigned = 0

    for care_home in care_homes:
        if hasattr(care_home, 'residents') and care_home.residents:
            # Get area code for this care home
            area_code = self._get_area_code_from_venue(care_home)

            # Get area ethnicity probabilities
            if area_code:
                area_probs = self._load_area_ethnicity_probabilities(area_code)
            else:
                # Fallback probabilities for elderly
                area_probs = {
                    self.ethnicity_codes['white']: 0.85,
                    self.ethnicity_codes['asian']: 0.08,
                    self.ethnicity_codes['black']: 0.04,
                    self.ethnicity_codes['mixed']: 0.02,
                    self.ethnicity_codes['other']: 0.01
                }
                # Normalize probabilities to ensure they sum to 1.0
                area_probs = self._normalize_probabilities(area_probs)

            # Assign ethnicity to each resident
            for person in care_home.residents:
                ethnicity = np.random.choice(
                    list(area_probs.keys()),
                    p=list(area_probs.values())
                )
                person.ethnicity = ethnicity
                total_people_assigned += 1

    logger.info(f"Completed care home ethnicity assignment: {total_people_assigned:,} people assigned")

assign_ethnicities_to_households(households)

Main method to assign ethnicities to all residents in households.

Parameters:

Name Type Description Default
households Households

The Households supergroup containing all household objects

required
Source code in june/distributors/ethnicity_distributor.py
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
def assign_ethnicities_to_households(self, households: Households) -> None:
    """Main method to assign ethnicities to all residents in households.

    Args:
        households (Households): The Households supergroup containing all household objects

    """
    logger.info(f"Starting ethnicity assignment for {len(households)} households")

    # First pass: collect all unique area codes that exist in this world
    if not self._data_loaded:
        logger.info("Collecting area codes from households...")
        area_codes_needed = set()
        for household in households:
            area_code = self._get_area_code(household)
            if area_code:
                area_codes_needed.add(area_code)

        logger.info(f"Found {len(area_codes_needed)} unique areas, loading relevant data...")
        self._preload_targeted_data(area_codes_needed)
        self._data_loaded = True

    total_people_assigned = 0
    areas_processed = set()

    for i, household in enumerate(households):
        if i % 1000 == 0 and i > 0:
            logger.info(f"Processed {i:,} households, assigned ethnicities to {total_people_assigned:,} people")

        if household.residents:
            # Get area code for this household
            area_code = self._get_area_code(household)
            areas_processed.add(area_code)

            # Assign ethnicities to all residents
            assignments = self._assign_household_ethnicities(household, area_code)

            # Apply assignments to Person objects
            for person in household.residents:
                if hasattr(person, 'id') and str(person.id) in assignments:
                    person.ethnicity = assignments[str(person.id)]
                    total_people_assigned += 1

    logger.info(f"Completed ethnicity assignment: {total_people_assigned:,} people assigned across {len(areas_processed)} unique areas")

    # Show sample of assignments
    self._display_sample_assignments(households, total_people_assigned)

assign_ethnicities_to_student_dorms(student_dorms)

Assign ethnicities to student dorm residents based on area demographics.

Parameters:

Name Type Description Default
student_dorms StudentDorms or similar supergroup

The student dorms supergroup containing all student dorm objects

required
Source code in june/distributors/ethnicity_distributor.py
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
def assign_ethnicities_to_student_dorms(self, student_dorms) -> None:
    """Assign ethnicities to student dorm residents based on area demographics.

    Args:
        student_dorms (StudentDorms or similar supergroup): The student dorms supergroup containing all student dorm objects

    """
    if not student_dorms:
        return

    logger.info(f"Starting ethnicity assignment for student dorm residents...")

    total_people_assigned = 0

    for student_dorm in student_dorms:
        if hasattr(student_dorm, 'residents') and student_dorm.residents:
            # Get area code for this student dorm
            area_code = self._get_area_code_from_venue(student_dorm)

            # Get area ethnicity probabilities
            if area_code:
                area_probs = self._load_area_ethnicity_probabilities(area_code)
            else:
                # Fallback probabilities for young adults
                area_probs = {
                    self.ethnicity_codes['white']: 0.70,
                    self.ethnicity_codes['asian']: 0.15,
                    self.ethnicity_codes['black']: 0.08,
                    self.ethnicity_codes['mixed']: 0.05,
                    self.ethnicity_codes['other']: 0.02
                }
                # Normalize probabilities to ensure they sum to 1.0
                area_probs = self._normalize_probabilities(area_probs)

            # Assign ethnicity to each resident
            for person in student_dorm.residents:
                ethnicity = np.random.choice(
                    list(area_probs.keys()),
                    p=list(area_probs.values())
                )
                person.ethnicity = ethnicity
                total_people_assigned += 1

    logger.info(f"Completed student dorm ethnicity assignment: {total_people_assigned:,} people assigned")