Skip to content

Sexual relationship distributor

SexualRelationshipDistributor

Distributes sexual relationships, orientations, and related attributes to people in the population. This class handles:

  1. Assigning sexual orientations to individuals
  2. Managing existing couples (already living together)
  3. Creating new exclusive relationships for singles
  4. Creating non-exclusive relationships (non-monogamous partners)
  5. Adding the possibility of infidelity (non-consensual non-exclusivity)

Relationships are stored in Person.sexual_partners with categories: - "exclusive": for monogamous partners - "non_exclusive": for non-monogamous partners

The relationship_status attribute tracks: - type: "exclusive", "non_exclusive", "no_partner" - consensual: boolean (True for consensual, False for non-consensual/cheating)

Source code in june/distributors/sexual_relationship_distributor.py
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
class SexualRelationshipDistributor:
    """Distributes sexual relationships, orientations, and related attributes to people
    in the population. This class handles:

    1. Assigning sexual orientations to individuals
    2. Managing existing couples (already living together)
    3. Creating new exclusive relationships for singles
    4. Creating non-exclusive relationships (non-monogamous partners)
    5. Adding the possibility of infidelity (non-consensual non-exclusivity)

    Relationships are stored in Person.sexual_partners with categories:
    - "exclusive": for monogamous partners
    - "non_exclusive": for non-monogamous partners

    The relationship_status attribute tracks:
    - type: "exclusive", "non_exclusive", "no_partner"
    - consensual: boolean (True for consensual, False for non-consensual/cheating)

    """

    def __init__(
        self,
        people: List[Person] = None,
        config_path: str = None,
        sexual_orientation_config: Dict = None,
        relationship_config: Dict = None,
        age_bins: List[int] = None,
        partner_limit_config: Dict = None,
        risk_profile_config: Dict = None,
        random_seed: int = None
    ):
        """
        Initialise the SexualRelationshipDistributor.

        Parameters
        ----------
        people:
            List of all people in the simulation (optional)
        config_path:
            Path to the YAML configuration file
        sexual_orientation_config:
            Dictionary containing probabilities of sexual orientations by gender and age
        relationship_config:
            Dictionary containing probabilities for different relationship types
        age_bins:
            List of age thresholds for binning purposes
        partner_limit_config:
            Dictionary containing limits on number of partners based on age, gender, and relationship type
        risk_profile_config:
            Dictionary containing risk profile configurations
        random_seed:
            Seed for random number generators to ensure reproducibility
        """
        self.people = people  # Store people for potential future use

        # Load configurations from YAML file
        self._load_configs(config_path)

        # Override with provided configs if specified
        if sexual_orientation_config:
            self.sexual_orientation_config = sexual_orientation_config
        if relationship_config:
            self.relationship_config = relationship_config
        if age_bins:
            self.age_bins = age_bins
        if partner_limit_config:
            self.partner_limit_config = partner_limit_config
        if risk_profile_config:
            self.risk_profile_config = risk_profile_config

        self.person_dict = {}
        if people:
            for person in people:
                self.person_dict[person.id] = person

        # Add caches
        self.compatibility_cache = {}  # (person1_id, person2_id) -> bool
        self.super_area_cache = {}  # (person1_id, person2_id) -> bool
        self.primary_activity_cache = {}  # (person1_id, person2_id) -> bool
        self.common_friends_cache = {}  # (person1_id, person2_id) -> bool
        self.age_bin_cache = {}  # person_id -> age_bin_string

        # Set random seed if provided for reproducibility
        if random_seed is not None:
            self.random_seed = random_seed
            np.random.seed(random_seed)
            logger.info(f"Using random seed {random_seed} for sexual relationship distribution")
        else:
            self.random_seed = None

        # Dictionary to track potential cheaters by ID
        self.potential_cheaters = set()

        # List to track created private rooms
        self.created_private_rooms = []

    def _load_configs(self, config_path=None):
        """Load configurations from YAML file.

        Args:
            config_path (str, optional, optional): Path to configuration file. If None, use default path.

        """
        try:
            # Set default path if not provided
            if config_path is None:
                base_path = pathlib.Path(__file__).parent.parent
                config_path = base_path / "configs" / "defaults" / "distributors" / "sexual_relationships_distributor.yaml"

            # Load YAML config
            with open(config_path, "r") as f:
                config = yaml.safe_load(f)

            # Set configurations from file
            self.sexual_orientation_config = config.get("sexual_orientation_config", self._default_sexual_orientation_config())
            self.relationship_config = config.get("relationship_config", self._default_relationship_config())
            self.age_bins = config.get("age_bins", [18, 26, 36, 51, 65, 100])
            self.partner_limit_config = config.get("partner_limit_config", self._default_partner_limit_config())
            self.risk_profile_config = config.get("risk_profile_config", {})

            logger.info(f"Loaded sexual relationship distributor configuration from {config_path}")
        except (FileNotFoundError, yaml.YAMLError) as e:
            logger.warning(f"Could not load configuration from {config_path}: {e}")
            logger.warning("Using default configurations instead")

            # Use defaults if config file could not be loaded
            self.sexual_orientation_config = self._default_sexual_orientation_config()
            self.relationship_config = self._default_relationship_config()
            self.age_bins = [18, 26, 36, 51, 65, 100]
            self.partner_limit_config = self._default_partner_limit_config()
            self.risk_profile_config = {}

    @staticmethod
    def _default_sexual_orientation_config():
        """Default sexual orientation probabilities by gender."""
        return {
            "m": {"heterosexual": 0.95, "homosexual": 0.03, "bisexual": 0.02},
            "f": {"heterosexual": 0.93, "homosexual": 0.02, "bisexual": 0.05},
        }

    @staticmethod
    def _default_relationship_config():
        """Default relationship configuration with probabilities."""
        return {
            "relationship_probability": {
                "no_partner": 0.30,
                "exclusive": 0.60,
                "non_exclusive": 0.10
            },
            "cheating_probability": 0.30,  # Base probability of a person in exclusive relationship cheating
            "age_difference": {
                "18-25": [0, 3],    # Age range: [min_diff, max_diff]
                "26-35": [0, 5],
                "36-50": [0, 10],
                "51-64": [0, 15],
                "65+": [0, 15]
            },
            "location_bonus": 2.0,  # Multiplier for relationship probability if same super area
            "friends_bonus": 1.5,   # Multiplier for relationship probability if common friends
            "activity_bonus": 3.0   # Multiplier for non-exclusive relationship if same primary activity
        }

    @staticmethod
    def _default_partner_limit_config():
        """Default configuration for maximum number of partners based on age, gender, and relationship type."""
        return {
            # Default limits for non-exclusive relationships by age group and gender
            "non_exclusive": {
                "18-25": {
                    "m": 3,
                    "f": 3
                },
                "26-35": {
                    "m": 3,
                    "f": 2
                },
                "36-50": {
                    "m": 2,
                    "f": 2
                },
                "51-64": {
                    "m": 1,
                    "f": 1
                },
                "65+": {
                    "m": 1,
                    "f": 1
                }
            },
            # Cheating (non-consensual) limits are lower than non-exclusive
            "non_consensual": {
                "default": 1,  # Default for all age groups and genders
                # Exceptions to the default
                "18-25": {
                    "m": 2,
                    "f": 2
                },
                "26-35": {
                    "m": 1,
                    "f": 1
                }
            },
            # Exclusive relationships always have exactly 1 partner
            "exclusive": {
                "default": 1
            }
        }

    def _selective_cache_management(self, people: List[Person]) -> None:
        """Selectively manage caches rather than clearing them completely.
        Only remove entries for people who are no longer relevant.

        Args:
            people (List[Person]): List of currently relevant people

        """
        # Create a set of all current people IDs
        current_ids = {person.id for person in people}

        # Filter compatibility cache - now using frozenset keys
        self.compatibility_cache = {
            key: value for key, value in self.compatibility_cache.items()
            if all(person_id in current_ids for person_id in key)
        }

        # Similarly filter other caches
        self.super_area_cache = {
            key: value for key, value in self.super_area_cache.items()
            if key[0] in current_ids and key[1] in current_ids
        }

        self.primary_activity_cache = {
            key: value for key, value in self.primary_activity_cache.items()
            if key[0] in current_ids and key[1] in current_ids
        }

        self.common_friends_cache = {
            key: value for key, value in self.common_friends_cache.items()
            if key[0] in current_ids and key[1] in current_ids
        }

        # Keep valid age bin cache entries
        self.age_bin_cache = {
            key: value for key, value in self.age_bin_cache.items()
            if key in current_ids
        }

        # Pre-populate age bin cache for current people
        for person in people:
            if person.age >= 18 and person.id not in self.age_bin_cache:
                self.age_bin_cache[person.id] = self._get_age_bin(person)

    def _get_household_id(self, person: Person) -> Optional[str]:
        """Get the household ID for a person, if available.

        Args:
            person (Person): 

        """
        if hasattr(person, "residence") and person.residence:
            if hasattr(person.residence, "group"):
                return getattr(person.residence.group, "id", None)
        return None

    def _get_primary_activity(self, person: Person) -> Optional[object]:
        """Get the primary activity for a person, if available.

        Args:
            person (Person): 

        """
        if (hasattr(person, 'subgroups') and person.subgroups and 
            hasattr(person.subgroups, 'primary_activity')):
            return person.subgroups.primary_activity
        return None

    def _get_super_area(self, person: Person) -> Optional[object]:
        """Get the super area for a person, if available.

        Args:
            person (Person): 

        """
        if (hasattr(person, 'area') and person.area and 
            hasattr(person.area, 'super_area')):
            return person.area.super_area
        return None

    def _get_friends(self, person: Person) -> Set[int]:
        """Get the set of friend IDs for a person, if available.

        Args:
            person (Person): 

        """
        if hasattr(person, 'friends'):
            if isinstance(person.friends, (set, list)):
                return set(person.friends)
        return set()

    def _get_age_bin(self, person: Person) -> str:
        """Return the age bin category for a person.

        Args:
            person (Person): The person to categorise

        Returns:
            : Age bin category as a string ("18-25", "26-35", etc.)

        """
        age = person.age

        # Check if person is already in cache
        if person.id in self.age_bin_cache:
            return self.age_bin_cache[person.id]

        # Calculate age bin
        if age < 26:
            age_bin = "18-25"
        elif age < 36:
            age_bin = "26-35"
        elif age < 51:
            age_bin = "36-50"
        elif age < 65:
            age_bin = "51-64"
        else:
            age_bin = "65+"

        # Store in cache
        self.age_bin_cache[person.id] = age_bin

        return age_bin

    def _filter_singles(self, people: List[Person]) -> List[Person]:
        """Filter out people who are already in relationships.

        Args:
            people (List[Person]): List of people to filter

        Returns:
            : List of single people (those without partners)

        """
        return [p for p in people if not p.has_sexual_partners]

    def _filter_by_relationship_type(self, people: List[Person], relationship_type: str, 
                                    consensual: Optional[bool] = None) -> List[Person]:
        """Filter people by their relationship type and consensual status.

        Args:
            people (List[Person]): List of people to filter
            relationship_type (str): Type of relationship to filter for ("exclusive", "non_exclusive", "no_partner")
            consensual (Optional[bool], optional): If provided, filter by consensual status as well (Default value = None)

        Returns:
            : Filtered list of people

        """
        if consensual is None:
            # Filter only by relationship type
            return [p for p in people if p.relationship_status.get("type") == relationship_type]
        else:
            # Filter by relationship type and consensual status
            return [p for p in people if p.relationship_status.get("type") == relationship_type and 
                                        p.relationship_status.get("consensual") == consensual]

    def _initialise_relationship_status(self, person: Person) -> None:
        """Initialise relationship status for a person if not already set.

        Args:
            person (Person): Person to initialise

        """
        if not hasattr(person, "relationship_status") or not person.relationship_status:
            person.relationship_status = {"type": "no_partner", "consensual": True}

        if not hasattr(person, "sexual_partners") or not person.sexual_partners:
            person.sexual_partners = {"exclusive": set(), "non_exclusive": set()}

    def distribute_sexual_relationships(self, super_areas: List[SuperArea]) -> None:
        """Main method to distribute sexual relationships across all super areas.

        Args:
            super_areas (List[SuperArea]): List of super areas to process

        """
        logger.info("Distributing sexual relationships and orientations")

        # Build a complete person dictionary for the whole simulation
        self.person_dict = {}
        for super_area in super_areas:
            for area in super_area.areas:
                for person in area.people:
                    self.person_dict[person.id] = person

        # Track total areas processed for logging
        total_areas = sum(len(super_area.areas) for super_area in super_areas)
        areas_processed = 0

        # Process each super area and its contained areas
        for super_area in super_areas:
            for area in super_area.areas:
                self.distribute_area_relationships(area)
                areas_processed += 1

                # Log progress periodically
                if areas_processed % 1000 == 0:
                    logger.info(f"Processed sexual relationships for {areas_processed} areas of {total_areas}")

        logger.info("Completed sexual relationship distribution")

        # Print some statistics for verification
        self._print_relationship_statistics(super_areas)

    def distribute_area_relationships(self, area: Area) -> None:
        """Process relationships for a single area.
        Uses Person helper methods where appropriate.

        Args:
            area (Area): 

        """
        # Selectively manage caches for this area
        self._selective_cache_management(area.people)

        # Gather all people in the area
        people = area.people
        adults = [p for p in people if p.age >= 18]

        # Pre-compute age bins for all adults
        for person in adults:
            self.age_bin_cache[person.id] = self._get_age_bin(person)

        # Initialise relationship status for all adults
        for person in adults:
            self._initialise_relationship_status(person)

        # 1. Identify people already in relationships vs singles
        singles = self._filter_by_relationship_type(adults, "no_partner")
        already_coupled = [p for p in adults if p not in singles]

        # Process existing household partnerships
        household_partners = defaultdict(set)
        for person in already_coupled:
            # Process existing exclusive partners
            for partner_id in person.get_partners("exclusive"):
                # Record this relationship in household_partners
                household_partners[person.id].add(partner_id)
                household_partners[partner_id].add(person.id)

                # Only process once per pair to avoid duplicate work
                if partner_id > person.id:
                    partner = self.person_dict.get(partner_id)
                    if partner:
                        self._assign_orientation_for_existing_couple(person, partner_id)

        # 2. Assign sexual orientations to all adults
        for person in adults:
            # Only assign if not already set
            if not hasattr(person, "sexual_orientation") or person.sexual_orientation is None:
                self._assign_sexual_orientation(person)

        # 3. Create exclusive relationships among singles based on probability
        self._create_exclusive_relationships(singles, area, household_partners)

        # 4. Handle non-exclusive relationships (casual partners and cheating)
        self._create_non_exclusive_relationships(adults, household_partners)

        # 5. Assign risk profiles to all adults
        self._assign_risk_profiles(adults)

    def _assign_sexual_orientation(self, person: Person) -> None:
        """Assign sexual orientation to a person based on configured probabilities.

        Args:
            person (Person): Person to assign orientation to

        """
        orientation_probs = self.sexual_orientation_config.get(person.sex, self.sexual_orientation_config["m"])
        orientations = list(orientation_probs.keys())
        probabilities = list(orientation_probs.values())

        # Normalise probabilities if they don't sum to 1
        total_prob = sum(probabilities)
        if total_prob != 1.0:
            probabilities = [p/total_prob for p in probabilities]

        # Assign orientation
        person.sexual_orientation = np.random.choice(orientations, p=probabilities)

    def _assign_orientation_for_existing_couple(self, person: Person, partner_id: int) -> None:
        """Assign compatible sexual orientations to people in existing relationships.
        For now, all previously existing couples assigned in household distributor are M/F.

        Possible combinations:
        - m: heterosexual, f: heterosexual
        - m: bisexual, f: heterosexual
        - m: bisexual, f: bisexual
        - m: heterosexual, f: bisexual

        Args:
            person (Person): Person in the relationship
            partner_id (int): ID of the partner

        """
        # Find the partner
        partner = self.person_dict.get(partner_id)
        if not partner:
            return

        # Set orientation probabilities based on configuration
        m_probs = self.sexual_orientation_config["m"]
        f_probs = self.sexual_orientation_config["f"]

        if person.sex == "m" and partner.sex == "f":
            # Male in relationship with female
            # Male can be heterosexual or bisexual
            # Female can be heterosexual or bisexual
            m_choices = ["heterosexual", "bisexual"]
            m_weights = [m_probs["heterosexual"], m_probs["bisexual"]]
            total_m_weight = sum(m_weights)
            m_weights = [w/total_m_weight for w in m_weights]

            f_choices = ["heterosexual", "bisexual"]
            f_weights = [f_probs["heterosexual"], f_probs["bisexual"]]
            total_f_weight = sum(f_weights)
            f_weights = [w/total_f_weight for w in f_weights]

            person.sexual_orientation = np.random.choice(m_choices, p=m_weights)
            partner.sexual_orientation = np.random.choice(f_choices, p=f_weights)

        elif person.sex == "f" and partner.sex == "m":
            # Female in relationship with male
            # Female can be heterosexual or bisexual
            # Male can be heterosexual or bisexual
            f_choices = ["heterosexual", "bisexual"]
            f_weights = [f_probs["heterosexual"], f_probs["bisexual"]]
            total_f_weight = sum(f_weights)
            f_weights = [w/total_f_weight for w in f_weights]

            m_choices = ["heterosexual", "bisexual"]
            m_weights = [m_probs["heterosexual"], m_probs["bisexual"]]
            total_m_weight = sum(m_weights)
            m_weights = [w/total_m_weight for w in m_weights]

            person.sexual_orientation = np.random.choice(f_choices, p=f_weights)
            partner.sexual_orientation = np.random.choice(m_choices, p=m_weights)

    def _is_compatible_orientation(self, person1: Person, person2: Person) -> bool:
        """Check if two people have compatible sexual orientations.
        Uses frozenset for cache keys to avoid checking both permutations.

        Args:
            person1 (Person): 
            person2 (Person): 

        """
        # Use frozenset as cache key to avoid checking both permutations
        cache_key = frozenset([person1.id, person2.id])

        if cache_key in self.compatibility_cache:
            return self.compatibility_cache[cache_key]

        # If not in cache, calculate compatibility using optimised checks
        # Avoid redundant calculations by using early returns

        # Fast-path for bisexual people (always compatible with everyone)
        if person1.sexual_orientation == "bisexual" and person2.sexual_orientation == "bisexual":
            self.compatibility_cache[cache_key] = True
            return True

        # Check heterosexual compatibility (different sexes)
        if person1.sexual_orientation == "heterosexual" and person2.sexual_orientation == "heterosexual":
            compatible = person1.sex != person2.sex
            self.compatibility_cache[cache_key] = compatible
            return compatible

        # Check homosexual compatibility (same sex)
        if person1.sexual_orientation == "homosexual" and person2.sexual_orientation == "homosexual":
            compatible = person1.sex == person2.sex
            self.compatibility_cache[cache_key] = compatible
            return compatible

        # Mixed orientations require more detailed checks
        p1_to_p2 = False
        p2_to_p1 = False

        # First person's attraction to second
        if person1.sexual_orientation == "heterosexual" and person1.sex != person2.sex:
            p1_to_p2 = True
        elif person1.sexual_orientation == "homosexual" and person1.sex == person2.sex:
            p1_to_p2 = True
        elif person1.sexual_orientation == "bisexual":
            p1_to_p2 = True

        # Second person's attraction to first
        if person2.sexual_orientation == "heterosexual" and person2.sex != person1.sex:
            p2_to_p1 = True
        elif person2.sexual_orientation == "homosexual" and person2.sex == person1.sex:
            p2_to_p1 = True
        elif person2.sexual_orientation == "bisexual":
            p2_to_p1 = True

        # Both need to be attracted to each other
        compatible = p1_to_p2 and p2_to_p1

        # Store in cache
        self.compatibility_cache[cache_key] = compatible

        return compatible


    def _get_age_appropriate_partners(self, person: Person, candidates: List[Person]) -> List[Person]:
        """Filter candidates to those with age-appropriate differences based on person's age.

        Args:
            person (Person): The person seeking partners
            candidates (List[Person]): List of potential partners to filter

        Returns:
            : List of candidates with age-appropriate differences

        """
        # Get age bin from cache
        age_bin = self.age_bin_cache.get(person.id)

        # Determine age preference based on age bin
        age_diff_range = self.relationship_config["age_difference"][age_bin]
        min_diff, max_diff = age_diff_range

        # Filter candidates based on age difference
        appropriate_candidates = []
        for candidate in candidates:
            age_diff = abs(candidate.age - person.age)
            if min_diff <= age_diff <= max_diff:
                appropriate_candidates.append(candidate)

        # If no appropriate candidates, return all candidates
        return appropriate_candidates or candidates

    def _get_cheating_probability(self, person: Person) -> float:
        """Return age-adjusted cheating probability.

        Args:
            person (Person): Person to calculate probability for

        Returns:
            : Age-adjusted cheating probability

        """
        base_probability = self.relationship_config["cheating_probability"]
        age_bin = self.age_bin_cache.get(person.id)

        if age_bin == "18-25":
            # Younger people more likely to cheat
            return min(base_probability * 1.5, 1.0)
        elif age_bin == "26-35" or age_bin == "36-50":
            # Middle-aged people at base rate
            return base_probability
        elif age_bin == "51-64":
            # Older adults less likely to cheat
            return base_probability * 0.7
        else:  # 65+
            # Elderly people much less likely to cheat
            return base_probability * 0.3

    def _get_non_exclusive_probability(self, person: Person) -> float:
        """Return age-adjusted non-exclusive relationship probability.

        Args:
            person (Person): Person to calculate probability for

        Returns:
            : Age-adjusted non-exclusive probability

        """
        base_probability = self.relationship_config["relationship_probability"]["non_exclusive"]
        age = person.age

        if age < 30:
            # Younger people more open to non-exclusive relationships
            return min(base_probability * 2.0, 1.0)
        elif age < 50:
            # Middle-aged people at base rate
            return base_probability
        elif age < 65:
            # Older adults less likely
            return base_probability * 0.5
        else:
            # Elderly people much less likely
            return base_probability * 0.2


    def _are_from_same_household(self, person1: Person, person2: Person) -> bool:
        """Check if two people are from the same household.

        Args:
            person1 (Person): First person
            person2 (Person): Second person

        Returns:
            : True if from same household, False otherwise

        """
        household1 = self._get_household_id(person1)
        household2 = self._get_household_id(person2)

        if household1 and household2:
            return household1 == household2
        return False

    def _are_from_same_super_area(self, person1: Person, person2: Person) -> bool:
        """Check if two people are from the same super area.

        Args:
            person1 (Person): First person
            person2 (Person): Second person

        Returns:
            : True if from same super area, False otherwise

        """
        cache_key = (person1.id, person2.id)
        reverse_key = (person2.id, person1.id)

        if cache_key in self.super_area_cache:
            return self.super_area_cache[cache_key]
        if reverse_key in self.super_area_cache:
            return self.super_area_cache[reverse_key]

        # Calculate result
        result = False
        super_area1 = self._get_super_area(person1)
        super_area2 = self._get_super_area(person2)

        if super_area1 and super_area2:
            result = super_area1.name == super_area2.name

        # Store in cache
        self.super_area_cache[cache_key] = result
        return result

    def _have_same_primary_activity(self, person1: Person, person2: Person) -> bool:
        """Check if two people share the same primary activity (workplace, school, etc.)

        Args:
            person1 (Person): First person
            person2 (Person): Second person

        Returns:
            : True if they share the same primary activity, False otherwise

        """
        cache_key = (person1.id, person2.id)
        reverse_key = (person2.id, person1.id)

        if cache_key in self.primary_activity_cache:
            return self.primary_activity_cache[cache_key]
        if reverse_key in self.primary_activity_cache:
            return self.primary_activity_cache[reverse_key]

        # If not in cache, calculate the result
        activity1 = self._get_primary_activity(person1)
        activity2 = self._get_primary_activity(person2)

        result = False
        if activity1 and activity2:
            result = activity1 == activity2

        # Store in cache
        self.primary_activity_cache[cache_key] = result

        return result

    def _have_common_friends(self, person1: Person, person2: Person) -> bool:
        """Check if two people have common friends.

        Args:
            person1 (Person): First person
            person2 (Person): Second person

        Returns:
            : True if they have common friends, False otherwise

        """
        # Check if both have friend attributes
        cache_key = (person1.id, person2.id)
        reverse_key = (person2.id, person1.id)

        if cache_key in self.common_friends_cache:
            return self.common_friends_cache[cache_key]
        if reverse_key in self.common_friends_cache:
            return self.common_friends_cache[reverse_key]

        # If not in cache, calculate the result
        friends1 = self._get_friends(person1)
        friends2 = self._get_friends(person2)

        result = len(friends1.intersection(friends2)) > 0

        # Store in cache
        self.common_friends_cache[cache_key] = result

        return result

    def _find_compatible_partners(self, 
                                person: Person, 
                                candidates: List[Person], 
                                exclude_household: bool = True,
                                household_partners: Dict[int, Set[int]] = None) -> List[Person]:
        """Find compatible partners based on orientation, household status, etc.

        Args:
            person (Person): Person looking for partners
            candidates (List[Person]): List of potential partners
            exclude_household (bool, optional): Whether to exclude people from the same household (Default value = True)
            household_partners (Dict[int, Set[int]], optional): Dictionary of existing household partnerships (Default value = None)

        Returns:
            : List of compatible partners

        """
        # Find compatible partners by orientation
        orientation_compatible = [
            p for p in candidates 
            if p.id != person.id and self._is_compatible_orientation(person, p)
        ]

        if not orientation_compatible:
            return []

        # If we're not considering household status, return all orientation-compatible
        if not exclude_household:
            return orientation_compatible

        # Handle household filtering
        same_household_ok = []
        non_household = []

        # If we have household_partners, check it
        if household_partners is None:
            household_partners = {}

        for p in orientation_compatible:
            # Check if they're already set as partners from household distributor
            if p.id in household_partners.get(person.id, set()):
                # They're already partners from household distributor, so it's OK
                same_household_ok.append(p)
            elif not self._are_from_same_household(person, p):
                # Not from same household, so it's OK
                non_household.append(p)

        # Prioritise based on relationship context
        # For most relationships, prioritise non-household members
        return non_household + same_household_ok

    def _select_partner_by_score(self, 
                                person: Person, 
                                candidates: List[Person], 
                                is_non_exclusive: bool = False) -> Optional[Person]:
        """Select a partner from candidates using compatibility scoring with efficient weighted sampling.

        Args:
            person (Person): Person seeking partners
            candidates (List[Person]): List of compatible candidates
            is_non_exclusive (bool, optional): Whether this is for a non-exclusive relationship (Default value = False)

        Returns:
            : Selected partner or None if no suitable partner found

        """
        if not candidates:
            return None

        # Age-appropriate filtering
        age_appropriate = self._get_age_appropriate_partners(person, candidates)

        if not age_appropriate:
            age_appropriate = candidates

        # Calculate compatibility scores without sorting
        weights = np.array([self._calculate_compatibility_score(person, candidate, is_non_exclusive=is_non_exclusive) 
                            for candidate in age_appropriate])

        # Check if we have valid weights
        total_weight = np.sum(weights)

        if total_weight > 0:
            # Normalise weights to probabilities and perform weighted selection directly
            probabilities = weights / total_weight
            selected_index = np.random.choice(len(age_appropriate), p=probabilities)
            return age_appropriate[selected_index]
        elif age_appropriate:
            # If all weights are zero but we have candidates, choose randomly
            return np.random.choice(age_appropriate)
        else:
            # No suitable candidates
            return None

    def _calculate_compatibility_score(self, person1: Person, person2: Person, is_non_exclusive: bool = False) -> float:
        """Calculate a compatibility score between two people based on various factors.

        Args:
            person1 (Person): First person
            person2 (Person): Second person
            is_non_exclusive (bool, optional): Whether this is for a non-exclusive relationship (applies primary activity bonus) (Default value = False)

        Returns:
            : Compatibility score (higher is more compatible)

        """
        score = 1.0

        # Age difference factor (closer ages get higher scores)
        age_diff = abs(person1.age - person2.age)
        if age_diff < 5:
            score *= 1.5
        elif age_diff < 10:
            score *= 1.2

        # Same super area bonus
        if self._are_from_same_super_area(person1, person2):
            score *= self.relationship_config["location_bonus"]

        # Common friends bonus
        if self._have_common_friends(person1, person2):
            score *= self.relationship_config["friends_bonus"]

        # Apply primary activity bonus for non-exclusive relationships
        if is_non_exclusive and self._have_same_primary_activity(person1, person2):
            score *= self.relationship_config["activity_bonus"]

        return score

    def _calculate_cheating_probability(self, person: Person) -> float:
        """Calculate the probability that a person will cheat, based on their age and other factors.

        Args:
            person (Person): The person to calculate probability for

        Returns:
            : Probability of cheating (0.0 to 1.0)

        """
        base_probability = self.relationship_config["cheating_probability"]
        age = person.age

        # Age-based adjustment
        if age < 25:
            # Younger people more likely to cheat
            cheating_prob = base_probability * 1.5
        elif age < 35:
            # Young adults slightly more likely
            cheating_prob = base_probability * 1.2
        elif age < 50:
            # Middle-aged at base rate
            cheating_prob = base_probability
        elif age < 65:
            # Older adults less likely
            cheating_prob = base_probability * 0.7
        else:  # 65+
            # Elderly much less likely
            cheating_prob = base_probability * 0.3

        # Apply gender adjustment if in risk profile config
        if hasattr(self, 'risk_profile_config') and 'gender_risk_factors' in self.risk_profile_config:
            gender_factors = self.risk_profile_config['gender_risk_factors'].get(person.sex, {})
            cheating_adjustment = gender_factors.get('cheating_adjustment', 0.0)
            cheating_prob += cheating_adjustment

        # Cap the probability between 0 and 1
        return max(0.0, min(1.0, cheating_prob))

    def _create_exclusive_relationships(self, singles: List[Person], area: Area, household_partners: Dict[int, Set[int]]) -> None:
        """Create exclusive relationships among singles.
        Uses Person helper methods where appropriate.

        Args:
            singles (List[Person]): 
            area (Area): 
            household_partners (Dict[int, Set[int]]): 

        """
        # Filter singles who should have exclusive relationships
        np.random.shuffle(singles)

        available_singles = []
        for person in singles:
            # Skip if the person shouldn't have an exclusive relationship 
            relationship_probs = self.relationship_config["relationship_probability"]
            exclusive_vs_no_partner = relationship_probs["exclusive"] / (relationship_probs["exclusive"] + relationship_probs["no_partner"])

            if np.random.random() < exclusive_vs_no_partner:
                available_singles.append(person)

        # Group by age bins for better matching
        age_binned_singles = defaultdict(list)
        for person in available_singles:
            bin_idx = 0
            for i, threshold in enumerate(self.age_bins):
                if person.age < threshold:
                    bin_idx = i
                    break

            age_binned_singles[bin_idx].append(person)

        # Process each age bin
        matched = set()
        for bin_idx, bin_singles in age_binned_singles.items():
            remaining = [p for p in bin_singles if p.id not in matched]

            while len(remaining) >= 2:
                person1 = remaining.pop(0)

                # Find compatible partners
                compatible_partners = self._find_compatible_partners(
                    person1, 
                    remaining, 
                    exclude_household=True, 
                    household_partners=household_partners
                )

                if not compatible_partners:
                    continue

                # Filter by age-appropriateness
                age_appropriate = self._get_age_appropriate_partners(person1, compatible_partners)

                if not age_appropriate:
                    age_appropriate = compatible_partners

                # Select partner using compatibility scoring
                person2 = self._select_partner_by_score(person1, age_appropriate)

                if not person2:
                    continue

                # Remove the selected partner from remaining
                remaining.remove(person2)

                # Create exclusive relationship
                self._create_relationship(person1, person2, "exclusive")

                # Determine potential cheaters
                if np.random.random() < self._get_cheating_probability(person1):
                    self.potential_cheaters.add(person1.id)
                if np.random.random() < self._get_cheating_probability(person2):
                    self.potential_cheaters.add(person2.id)

                # Mark as matched
                matched.add(person1.id)
                matched.add(person2.id)

    def _create_non_exclusive_relationships(self, people: List[Person], household_partners: Dict[int, Set[int]]) -> None:
        """Create non-exclusive relationships, including:
        1. People who prefer non-exclusive relationships
        2. People in exclusive relationships who cheat

        Args:
            people (List[Person]): List of all people in the area
            household_partners (Dict[int, Set[int]]): Dictionary mapping person IDs to sets of partner IDs from household distributor

        """
        # Filter adults
        adults = [p for p in people if p.age >= 18]

        # Get singles who could become non-exclusive relationship seekers
        singles = self._filter_by_relationship_type(adults, "no_partner")

        # Get potential cheaters (people in exclusive relationships who might cheat)
        exclusive_people = self._filter_by_relationship_type(adults, "exclusive", True)
        potential_cheaters = [p for p in exclusive_people if p.id in self.potential_cheaters]

        # Identify people who want non-exclusive relationships
        non_exclusive_seekers = []
        for person in singles:
            # Decide if this single person wants non-exclusive relationships
            # Use age-adjusted probability
            non_exclusive_prob = self._get_non_exclusive_probability(person)

            # Calculate adjusted probability relative to no_partner
            rel_probs = self.relationship_config["relationship_probability"]
            no_partner_prob = rel_probs["no_partner"]

            # Calculate probability of non-exclusive vs no_partner
            non_exclusive_vs_no_partner = non_exclusive_prob / (non_exclusive_prob + no_partner_prob)

            if np.random.random() < non_exclusive_vs_no_partner:
                person.set_relationship_status("non_exclusive", True)
                non_exclusive_seekers.append(person)

        # Create non-exclusive relationships between non_exclusive seekers
        self._create_consensual_non_exclusive_relationships(non_exclusive_seekers, household_partners)

        # Create cheating relationships for potential cheaters
        self._create_cheating_relationships(potential_cheaters, non_exclusive_seekers, household_partners)

    def _get_max_partners(self, person: Person, relationship_context: str = "non_exclusive") -> int:
        """Determine the maximum number of partners a person can have based on their age, gender,
        and relationship context.

        Args:
            person (Person): The person to determine max partners for
            relationship_context (str, optional): The relationship context ("exclusive", "non_exclusive", or "non_consensual") (Default value = "non_exclusive")

        Returns:
            : Maximum number of allowed partners for this person in this context

        """
        # Default limit if configuration doesn't specify
        default_limit = 1

        # For exclusive relationships, always return 1
        if relationship_context == "exclusive":
            return self.partner_limit_config["exclusive"]["default"]

        # Get age group from cache
        age_group = self.age_bin_cache.get(person.id)

        # Get gender
        gender = person.sex  # "m" or "f"

        # For non-consensual (cheating), check specific config or use default
        if relationship_context == "non_consensual":
            # Check if specific configuration exists for this age group and gender
            if age_group in self.partner_limit_config["non_consensual"]:
                if gender in self.partner_limit_config["non_consensual"][age_group]:
                    return self.partner_limit_config["non_consensual"][age_group][gender]

            # If no specific config, return default for non-consensual
            return self.partner_limit_config["non_consensual"]["default"]

        # For non-exclusive, look up appropriate limit
        if age_group in self.partner_limit_config["non_exclusive"]:
            if gender in self.partner_limit_config["non_exclusive"][age_group]:
                return self.partner_limit_config["non_exclusive"][age_group][gender]

        # If we couldn't find a specific limit, return default
        return default_limit

    def _create_consensual_non_exclusive_relationships(self, non_exclusive_seekers: List[Person], household_partners: Dict[int, Set[int]]) -> None:
        """Create non-exclusive relationships between people seeking non-exclusive relationships.
        These are consensual non-monogamous relationships where both parties agree
        to the arrangement.

        Args:
            non_exclusive_seekers (List[Person]): List of people seeking non-exclusive relationships
            household_partners (Dict[int, Set[int]]): Dictionary mapping person IDs to sets of partner IDs from household distributor

        """
        # Randomise
        np.random.shuffle(non_exclusive_seekers)

        # Track current partner counts for all people to enforce limits
        partner_counts = {}
        for person in non_exclusive_seekers:
            if hasattr(person, "sexual_partners") and "non_exclusive" in person.sexual_partners:
                partner_counts[person.id] = len(person.sexual_partners["non_exclusive"])
            else:
                partner_counts[person.id] = 0

        # Each person might have multiple partners
        for i, person in enumerate(non_exclusive_seekers):
            # Skip if person already processed or removed
            if person.id not in partner_counts:
                continue

            # Skip if person already at or over their limit
            current_partner_count = partner_counts[person.id]
            max_partners = self._get_max_partners(person, "non_exclusive")

            if current_partner_count >= max_partners:
                continue

            # Determine remaining partners allowed
            remaining_partners = max_partners - current_partner_count

            # Determine number of partners to add (limited by remaining_partners)
            # Use probabilities that favor fewer partners
            if remaining_partners == 1:
                num_partners = 1
            elif remaining_partners == 2:
                num_partners = np.random.choice([1, 2], p=[0.6, 0.4])
            elif remaining_partners == 3:
                num_partners = np.random.choice([1, 2, 3], p=[0.5, 0.3, 0.2])
            elif remaining_partners == 4:
                num_partners = np.random.choice([1, 2, 3, 4], p=[0.4, 0.3, 0.2, 0.1])
            else:
                num_partners = np.random.choice(range(1, remaining_partners + 1), p=None)  # Uniform distribution

            # Find potential partners with compatible orientation
            orientation_compatible = [
                p for p in non_exclusive_seekers 
                if p.id != person.id and self._is_compatible_orientation(person, p)
            ]

            # Filter out people from the same household (unless already set as partners)
            same_household_ok = []
            non_household = []

            for p in orientation_compatible:
                # Check if they're already set as partners from household distributor
                if p.id in household_partners.get(person.id, set()):
                    # They're already partners from household distributor, so it's OK
                    same_household_ok.append(p)
                elif not self._are_from_same_household(person, p):
                    # Not from same household, so it's OK
                    non_household.append(p)

            # Prioritise non-household partners for non-exclusive relationships,
            # but include pre-existing household partners if needed
            candidates = non_household + same_household_ok

            if not candidates:
                continue

            # Filter by age-appropriateness
            age_appropriate = self._get_age_appropriate_partners(person, candidates)

            if not age_appropriate:
                age_appropriate = candidates

            # Filter out candidates who have already reached their maximum partners
            valid_candidates = []
            for candidate in age_appropriate:
                if candidate.id in partner_counts:
                    candidate_max = self._get_max_partners(candidate, "non_exclusive")
                    if partner_counts[candidate.id] < candidate_max:
                        valid_candidates.append(candidate)
                else:
                    valid_candidates.append(candidate)

            if not valid_candidates:
                continue

            # Score potential partners by compatibility - include activity bonus for non-exclusive
            scored_candidates = [(p, self._calculate_compatibility_score(person, p, is_non_exclusive=True)) 
                               for p in valid_candidates]

            # Sort by compatibility score (higher scores first)
            scored_candidates.sort(key=lambda x: x[1], reverse=True)

            # Limit to actual number available
            num_partners = min(num_partners, len(scored_candidates))

            # Create relationships with top-scored partners
            for j in range(num_partners):
                if j < len(scored_candidates):
                    partner, _ = scored_candidates[j]

                    # Verify partner hasn't reached their limit in the meantime
                    partner_max = self._get_max_partners(partner, "non_exclusive")
                    if partner.id in partner_counts and partner_counts[partner.id] >= partner_max:
                        continue

                    # Create the relationship
                    self._create_relationship(person, partner, "non_exclusive")

                    # Update partner counts for both people
                    partner_counts[person.id] = partner_counts.get(person.id, 0) + 1
                    partner_counts[partner.id] = partner_counts.get(partner.id, 0) + 1

                    # Check if either person has reached their maximum
                    if partner_counts[person.id] >= max_partners:
                        break

    def _create_cheating_relationships(
        self, 
        potential_cheaters: List[Person], 
        non_exclusive_seekers: List[Person],
        household_partners: Dict[int, Set[int]]
    ) -> None:
        """Create non-consensual relationships for people who cheat on exclusive partners.
        Uses Person helper methods for relationship management.

        Args:
            potential_cheaters (List[Person]): List of people who might cheat
            non_exclusive_seekers (List[Person]): List of people open to non-exclusive relationships
            household_partners (Dict[int, Set[int]]): Dictionary mapping person IDs to sets of partner IDs from household distributor

        """
        # Track current partner counts for all people to enforce limits
        partner_counts = {}

        # Initialise all potential cheaters
        for person in potential_cheaters:
            partner_counts[person.id] = len(person.sexual_partners.get("non_exclusive", set()))

        # Initialise all non-exclusive seekers
        for person in non_exclusive_seekers:
            partner_counts[person.id] = len(person.sexual_partners.get("non_exclusive", set()))

        for cheater in potential_cheaters:
            # Skip if over limit already
            if partner_counts.get(cheater.id, 0) >= self._get_max_partners(cheater, "non_consensual"):
                continue

            # Decide if this potential cheater actually cheats
            cheating_prob = self._calculate_cheating_probability(cheater)

            if np.random.random() < cheating_prob:
                # Get maximum partners for this cheater
                max_partners = self._get_max_partners(cheater, "non_consensual")

                # Skip if max_partners is 0 or if cheater already has enough non-exclusive partners
                current_partners = partner_counts.get(cheater.id, 0)
                if max_partners <= 0 or current_partners >= max_partners:
                    continue

                # Determine remaining partners allowed
                remaining_slots = max_partners - current_partners

                # Usually just one relationship for cheating, with small chance of multiple affairs
                num_affairs = 1
                if remaining_slots > 1 and np.random.random() < 0.2:  # 20% chance of multiple affairs
                    num_affairs = min(2, remaining_slots)  # At most 2 affairs

                # Find compatible partners
                compatible_partners = self._find_compatible_partners(
                    cheater, 
                    non_exclusive_seekers, 
                    exclude_household=True,
                    household_partners=household_partners
                )

                if not compatible_partners:
                    continue

                # Filter by age-appropriateness
                age_appropriate = self._get_age_appropriate_partners(cheater, compatible_partners)

                if not age_appropriate:
                    age_appropriate = compatible_partners

                # Filter out candidates who have already reached their maximum partners
                valid_candidates = []
                for candidate in age_appropriate:
                    candidate_max = self._get_max_partners(candidate, "non_exclusive")
                    if partner_counts.get(candidate.id, 0) < candidate_max:
                        valid_candidates.append(candidate)

                if not valid_candidates:
                    continue

                # Create the affairs
                affairs_created = 0
                for _ in range(num_affairs):
                    if valid_candidates and affairs_created < remaining_slots:
                        # Select partner using compatibility scoring
                        partner = self._select_partner_by_score(cheater, valid_candidates, is_non_exclusive=True)

                        if partner:
                            # Verify partner hasn't reached their limit in the meantime
                            partner_max = self._get_max_partners(partner, "non_exclusive")
                            if partner_counts.get(partner.id, 0) >= partner_max:
                                valid_candidates.remove(partner)
                                continue

                            # Create the non-exclusive relationship
                            self._create_relationship(cheater, partner, "non_exclusive")

                            # Mark relationship as non-consensual
                            self._mark_non_consensual_relationship(cheater)

                            # Update partner counts
                            partner_counts[cheater.id] = partner_counts.get(cheater.id, 0) + 1
                            partner_counts[partner.id] = partner_counts.get(partner.id, 0) + 1

                            # Remove this partner from future consideration
                            valid_candidates.remove(partner)

                            # Increment affairs created
                            affairs_created += 1

    def _create_relationship(self, person1: Person, person2: Person, relationship_type: str) -> None:
        """Create a relationship between two people using Person helper methods.

        Args:
            person1 (Person): First person in the relationship
            person2 (Person): Second person in the relationship
            relationship_type (str): Type of relationship to create ("exclusive" or "non_exclusive")

        """
        # Use the Person helper method to add partners for both people
        person1.add_sexual_partner(person2.id, relationship_type)
        person2.add_sexual_partner(person1.id, relationship_type)

        # For exclusive relationships, the add_sexual_partner method already sets relationship_status
        # For non-exclusive relationships, we need to update the relationship status manually
        if relationship_type == "non_exclusive":
            if not person1.is_in_exclusive_relationship:  # Don't change status if already in exclusive relationship
                person1.relationship_status = {"type": "non_exclusive", "consensual": True}
            if not person2.is_in_exclusive_relationship:
                person2.relationship_status = {"type": "non_exclusive", "consensual": True}

        # Create individual PrivateRooms for each person if they don't have one
        self.create_private_room_for_person(person1)
        self.create_private_room_for_person(person2)

    def create_private_room_for_person(self, person: Person) -> None:
        """Create a private room for a person if they don't already have one.

        Args:
            person (Person): Person to create a private room for

        """
        # Check if person already has a private room
        if person.sexual_encounter is None:
            # Create the private room (abstract/virtual space)
            private_room = PrivateRoom(
                owner_id=person.id,
                max_occupancy=1,  # Each person gets their own room
                area=person.area,
                super_area=person.area.super_area if person.area else None
            )

            # Add the person to their private room
            private_room.add(person)

            # Track the created private room
            self.created_private_rooms.append(private_room)

    def _mark_non_consensual_relationship(self, person: Person) -> None:
        """Mark a person's relationship as non-consensual (cheating).

        Args:
            person (Person): Person whose relationship status should be marked as non-consensual

        """
        if person.relationship_status.get("type") == "exclusive":
            person.relationship_status["consensual"] = False

    def _calculate_risk_profile(self, person: Person) -> Dict:
        """Calculate a multi-dimensional risk profile for a person based on their
        demographic characteristics and relationship status.

        Args:
            person (Person): Person to calculate risk profile for

        Returns:
            : Dictionary with various risk dimensions and testing frequency metrics

        """
        # Start with baseline values
        profile = {
            "behaviour_risk": 50,  # 0-100: risk from sexual behaviours
            "demographic_risk": 50,  # 0-100: risk from demographic factors
            "relationship_risk": 50,  # 0-100: risk from relationship patterns
            "testing_frequency": 5,  # 0-10 scale of testing likelihood
            "testing_consistency": 5,  # 0-10 scale of consistency in testing
        }

        # Load risk profile configuration - use safer defaultdict to avoid KeyErrors
        config = defaultdict(lambda: defaultdict(dict))
        if hasattr(self, 'risk_profile_config') and self.risk_profile_config:
            for category, values in self.risk_profile_config.items():
                for key, adjustment in values.items():
                    config[category][key] = adjustment

        # Age factors - apply from risk_profile_config if available
        age = person.age
        if age < 25 and '<25' in config.get('age_risk_factors', {}):
            factors = config['age_risk_factors']['<25']
            for key, value in factors.items():
                if key in profile:
                    profile[key] += value
        elif age < 35 and '25-35' in config.get('age_risk_factors', {}):
            factors = config['age_risk_factors']['25-35']
            for key, value in factors.items():
                if key in profile:
                    profile[key] += value
        elif age < 50 and '36-50' in config.get('age_risk_factors', {}):
            factors = config['age_risk_factors']['36-50']
            for key, value in factors.items():
                if key in profile:
                    profile[key] += value
        elif age < 65 and '51-65' in config.get('age_risk_factors', {}):
            factors = config['age_risk_factors']['51-65'] 
            for key, value in factors.items():
                if key in profile:
                    profile[key] += value
        elif '>65' in config.get('age_risk_factors', {}):
            factors = config['age_risk_factors']['>65']
            for key, value in factors.items():
                if key in profile:
                    profile[key] += value

        # Apply relationship factors
        if hasattr(person, "relationship_status"):
            rel_type = person.relationship_status.get("type", "no_partner")
            consensual = person.relationship_status.get("consensual", True)

            # Apply relationship risk factors from config if available
            relationship_key = None
            if rel_type == "exclusive" and consensual:
                relationship_key = "exclusive_consensual"
            elif rel_type == "exclusive" and not consensual:
                relationship_key = "exclusive_non_consensual"
            elif rel_type == "non_exclusive":
                relationship_key = "non_exclusive"

            if relationship_key and relationship_key in config.get('relationship_risk_factors', {}):
                factors = config['relationship_risk_factors'][relationship_key]
                for key, value in factors.items():
                    if key in profile:
                        profile[key] += value

        # Partner count factors
        partner_count = self._count_partners(person)
        if partner_count > 0:
            profile["behaviour_risk"] += min(partner_count * 8, 40)  # Cap at +40
            profile["testing_frequency"] += min(partner_count, 3)  # More partners, more testing

        # Gender/sex factors
        gender_key = person.sex
        if gender_key in config.get('gender_risk_factors', {}):
            factors = config['gender_risk_factors'][gender_key]
            for key, value in factors.items():
                if key in profile:
                    profile[key] += value

        # Sexual orientation factors
        if hasattr(person, "sexual_orientation"):
            orientation_key = None
            if person.sex == "m" and person.sexual_orientation == "homosexual":
                orientation_key = "m_homosexual"
            elif person.sexual_orientation == "bisexual":
                orientation_key = "bisexual"

            if orientation_key and orientation_key in config.get('orientation_risk_factors', {}):
                factors = config['orientation_risk_factors'][orientation_key]
                for key, value in factors.items():
                    if key in profile:
                        profile[key] += value

        # Educational factors (if available)
        if hasattr(person, "education") and isinstance(person.education, (int, float)):
            if person.education > 2:  # Higher education
                profile["testing_frequency"] += 1
                profile["testing_consistency"] += 2

        # Cap all values to their appropriate ranges
        for key in ["behaviour_risk", "demographic_risk", "relationship_risk"]:
            profile[key] = max(0, min(100, profile[key]))

        for key in ["testing_frequency", "testing_consistency"]:
            profile[key] = max(0, min(10, profile[key]))

        # Calculate overall risk score (weighted average)
        profile["overall_risk"] = (
            profile["behaviour_risk"] * 0.4 + 
            profile["demographic_risk"] * 0.3 + 
            profile["relationship_risk"] * 0.3
        )

        # Categorise testing frequency
        if profile["testing_frequency"] >= 8:
            profile["testing_category"] = "very_high"
        elif profile["testing_frequency"] >= 6:
            profile["testing_category"] = "high"
        elif profile["testing_frequency"] >= 4:
            profile["testing_category"] = "medium"
        elif profile["testing_frequency"] >= 2:
            profile["testing_category"] = "low"
        else:
            profile["testing_category"] = "very_low"

        return profile

    def _count_partners(self, person: Person) -> int:
        """Count the total number of sexual partners a person has.
        Uses the Person helper method.

        Args:
            person (Person): Person to count partners for

        Returns:
            : Total number of partners across all relationship types

        """
        return person.count_partners()

    def _assign_risk_profiles(self, people: List[Person]) -> None:
        """Assign risk and testing profiles to all adults in the simulation.

        Args:
            people (List[Person]): List of people to assign risk profiles to

        """
        for person in people:
            # Skip children
            if person.age < 18:
                continue

            # Calculate and assign risk profile
            person.sexual_risk_profile = self._calculate_risk_profile(person)


    #============================================================= VISUALISATION TOOLS ===================================

    def _print_relationship_statistics(self, super_areas: List[SuperArea]) -> None:
        """Print statistics about the distribution of relationships.

        Args:
            super_areas (List[SuperArea]): List of all super areas

        """
        # Initialise counters
        total_adults = 0
        no_partner = 0
        exclusive_consensual = 0
        exclusive_non_consensual = 0
        non_exclusive = 0

        # Count orientations
        orientations = defaultdict(int)

        # Age group stats
        age_groups = {
            "18-25": {"total": 0, "no_partner": 0, "exclusive": 0, "non_consensual": 0, "non_exclusive": 0},
            "26-35": {"total": 0, "no_partner": 0, "exclusive": 0, "non_consensual": 0, "non_exclusive": 0},
            "36-50": {"total": 0, "no_partner": 0, "exclusive": 0, "non_consensual": 0, "non_exclusive": 0},
            "51-64": {"total": 0, "no_partner": 0, "exclusive": 0, "non_consensual": 0, "non_exclusive": 0},
            "65+": {"total": 0, "no_partner": 0, "exclusive": 0, "non_consensual": 0, "non_exclusive": 0}
        }

        # Count shared primary activity relationships
        shared_activity_relationships = {
            "exclusive": 0,
            "non_exclusive": 0,
            "cheating": 0
        }
        total_relationships = {
            "exclusive": 0,
            "non_exclusive": 0,
            "cheating": 0
        }

        # Process all areas in each super area
        for super_area in super_areas:
            for area in super_area.areas:
                for person in area.people:
                    if person.age < 18:
                        continue

                    total_adults += 1

                    # Determine age group
                    age_group = None
                    if person.age < 26:
                        age_group = "18-25"
                    elif person.age < 36:
                        age_group = "26-35"
                    elif person.age < 51:
                        age_group = "36-50"
                    elif person.age < 65:
                        age_group = "51-64"
                    else:
                        age_group = "65+"

                    age_groups[age_group]["total"] += 1

                    # Count sexual orientations
                    if hasattr(person, "sexual_orientation"):
                        orientations[person.sexual_orientation] += 1



                    # Count relationship statuses
                    if not hasattr(person, "relationship_status"):
                        no_partner += 1
                        age_groups[age_group]["no_partner"] += 1
                    elif person.relationship_status["type"] == "no_partner":
                        no_partner += 1
                        age_groups[age_group]["no_partner"] += 1
                    elif person.relationship_status["type"] == "exclusive":
                        if person.relationship_status["consensual"]:
                            exclusive_consensual += 1
                            age_groups[age_group]["exclusive"] += 1

                            # Check partner's activity for exclusive relationships
                            if hasattr(person, "sexual_partners") and "exclusive" in person.sexual_partners:
                                for partner_id in person.sexual_partners["exclusive"]:
                                    partner = self.person_dict.get(partner_id)
                                    if partner and partner.id > person.id:  # Count each relationship once
                                        total_relationships["exclusive"] += 1
                                        if self._have_same_primary_activity(person, partner):
                                            shared_activity_relationships["exclusive"] += 1
                        else:
                            exclusive_non_consensual += 1
                            age_groups[age_group]["non_consensual"] += 1

                            # Check partner's activity for cheating relationships
                            if hasattr(person, "sexual_partners") and "non_exclusive" in person.sexual_partners:
                                for partner_id in person.sexual_partners["non_exclusive"]:
                                    partner = self.person_dict.get(partner_id)
                                    if partner and partner.id > person.id:
                                        total_relationships["cheating"] += 1
                                        if self._have_same_primary_activity(person, partner):
                                            shared_activity_relationships["cheating"] += 1
                    elif person.relationship_status["type"] == "non_exclusive":
                        non_exclusive += 1
                        age_groups[age_group]["non_exclusive"] += 1

                        # Check partner's activity for non-exclusive relationships
                        if hasattr(person, "sexual_partners") and "non_exclusive" in person.sexual_partners:
                            for partner_id in person.sexual_partners["non_exclusive"]:
                                partner = self.person_dict.get(partner_id)
                                if partner and partner.id > person.id and partner.relationship_status["type"] == "non_exclusive":
                                    total_relationships["non_exclusive"] += 1
                                    if self._have_same_primary_activity(person, partner):
                                        shared_activity_relationships["non_exclusive"] += 1

        # Print statistics
        print("\n============================================================")
        print("               SEXUAL RELATIONSHIP STATISTICS")
        print("============================================================")
        print(f"Total adults: {total_adults}")
        print(f"No partner: {no_partner} ({no_partner/total_adults*100:.1f}%)")
        print(f"Exclusive consensual: {exclusive_consensual} ({exclusive_consensual/total_adults*100:.1f}%)")
        print(f"Exclusive non-consensual: {exclusive_non_consensual} ({exclusive_non_consensual/total_adults*100:.1f}%)")
        print(f"Non-exclusive: {non_exclusive} ({non_exclusive/total_adults*100:.1f}%)")

        print("\n----- Sexual Orientation Distribution -----")
        for orientation, count in orientations.items():
            print(f"{orientation}: {count} ({count/total_adults*100:.1f}%)")

        print("\n----- Age Group Relationship Statistics -----")
        for age_group, stats in age_groups.items():
            if stats["total"] > 0:
                print(f"\nAge Group: {age_group} (Total: {stats['total']})")
                print(f"  No partner: {stats['no_partner']} ({stats['no_partner']/stats['total']*100:.1f}%)")
                print(f"  Exclusive consensual: {stats['exclusive']} ({stats['exclusive']/stats['total']*100:.1f}%)")
                print(f"  Exclusive non-consensual: {stats['non_consensual']} ({stats['non_consensual']/stats['total']*100:.1f}%)")
                print(f"  Non-exclusive: {stats['non_exclusive']} ({stats['non_exclusive']/stats['total']*100:.1f}%)")

        print("\n----- Shared Primary Activity Statistics -----")
        for rel_type, count in shared_activity_relationships.items():
            total = total_relationships[rel_type]
            if total > 0:
                print(f"{rel_type} relationships with shared primary activity: {count} of {total} ({count/total*100:.1f}%)")

        print("============================================================")

        # Print count of potential cheaters
        print(f"Potential cheaters: {len(self.potential_cheaters)} people")
        print("============================================================")

        # Log sample persons
        self.log_sample_persons(super_areas, 10)  # Log 10 sample persons

    def log_sample_persons(self, super_areas: List[SuperArea], sample_size: int = 10) -> None:
        """Log detailed information about a sample of persons including their relationships.
        Ensures we sample a diverse set of relationship types, orientations, and living arrangements.

        Args:
            super_areas (List[SuperArea]): List of all super areas
            sample_size (int, optional): Number of persons to sample (default: 10)

        """
        print("\n============================================================")
        print("           SAMPLE PERSONS WITH RELATIONSHIP DETAILS")
        print("============================================================")

        # Group adults by various attributes for diverse sampling
        # By relationship type
        exclusive_consensual = []
        exclusive_non_consensual = []
        non_exclusive = []

        # By orientation
        heterosexual_people = []
        homosexual_people = []
        bisexual_people = []

        # By household arrangement
        shared_household_pairs = []  # Pairs of partners living in same household
        different_household_pairs = []  # Pairs of partners in different households

        # By shared activity
        shared_activity_pairs = []  # Pairs who share primary activity

        # By age group
        age_groups = {
            "18-25": [],
            "26-35": [],
            "36-50": [],
            "51-64": [],
            "65+": []
        }

        # Track all households with partners
        household_map = {}  # household_id -> list of people

        # Risk profile statistics
        behaviour_risk_avg = 0
        demographic_risk_avg = 0
        relationship_risk_avg = 0
        overall_risk_avg = 0
        total_with_profiles = 0

        for super_area in super_areas:
            for area in super_area.areas:
                for person in area.people:
                    if person.age < 18 or not hasattr(person, "relationship_status"):
                        continue

                    rel_type = person.relationship_status.get("type", "unknown")
                    consensual = person.relationship_status.get("consensual", True)

                    if hasattr(person, "sexual_risk_profile"):                 
                        total_with_profiles += 1
                        sexual_risk_profile = person.sexual_risk_profile
                        behaviour_risk_avg += sexual_risk_profile["behaviour_risk"]
                        demographic_risk_avg += sexual_risk_profile["demographic_risk"]
                        relationship_risk_avg += sexual_risk_profile["relationship_risk"]
                        overall_risk_avg += sexual_risk_profile["overall_risk"]

                    # Skip people with no partners
                    if rel_type == "no_partner":
                        continue

                    # Make sure they have actual partners
                    if not hasattr(person, "sexual_partners") or not any(person.sexual_partners.values()):
                        continue

                    # Add to age group
                    if person.age < 26:
                        age_groups["18-25"].append(person)
                    elif person.age < 36:
                        age_groups["26-35"].append(person)
                    elif person.age < 51:
                        age_groups["36-50"].append(person)
                    elif person.age < 65:
                        age_groups["51-64"].append(person)
                    else:
                        age_groups["65+"].append(person)

                    # Get person's household ID
                    household_id = "N/A"
                    if (hasattr(person, "residence") and person.residence and 
                        hasattr(person.residence, "group")):
                        household_id = getattr(person.residence.group, "id", "N/A")

                        # Track people by household
                        if household_id not in household_map:
                            household_map[household_id] = []
                        household_map[household_id].append(person)

                    # Group by sexual orientation
                    orientation = getattr(person, "sexual_orientation", "unknown")
                    if orientation == "heterosexual":
                        heterosexual_people.append(person)
                    elif orientation == "homosexual":
                        homosexual_people.append(person)
                    elif orientation == "bisexual":
                        bisexual_people.append(person)

                    # Add to appropriate relationship category
                    if rel_type == "exclusive":
                        if consensual:
                            exclusive_consensual.append(person)
                        else:
                            exclusive_non_consensual.append(person)
                    elif rel_type == "non_exclusive":
                        non_exclusive.append(person)

                    # Find pairs living in same/different households
                    if hasattr(person, "sexual_partners"):
                        partner_types = ["exclusive", "non_exclusive"]
                        for partner_type in partner_types:
                            if partner_type in person.sexual_partners:
                                for partner_id in person.sexual_partners[partner_type]:
                                    partner = self.person_dict.get(partner_id)
                                    if partner and partner.id > person.id:  # Avoid duplicates
                                        # Check for shared household
                                        partner_household = "N/A"
                                        if (hasattr(partner, "residence") and partner.residence and 
                                            hasattr(partner.residence, "group")):
                                            partner_household = getattr(partner.residence.group, "id", "N/A")

                                        if household_id != "N/A" and household_id == partner_household:
                                            shared_household_pairs.append((person, partner))
                                        elif household_id != "N/A" and partner_household != "N/A" and household_id != partner_household:
                                            different_household_pairs.append((person, partner))

                                        # Check for shared activity
                                        if self._have_same_primary_activity(person, partner):
                                            shared_activity_pairs.append((person, partner))

        # Create a diverse sample
        sample_persons = []
        seen_households = set()  # To track household diversity

        # Print category counts
        print(f"\nCandidate pools:")
        print(f"Exclusive consensual: {len(exclusive_consensual)}")
        print(f"Exclusive non-consensual: {len(exclusive_non_consensual)}")
        print(f"Non-exclusive: {len(non_exclusive)}")
        print(f"Heterosexual people: {len(heterosexual_people)}")
        print(f"Homosexual people: {len(homosexual_people)}")
        print(f"Bisexual people: {len(bisexual_people)}")

        print(f"\nAge groups:")
        for age_group, people in age_groups.items():
            print(f"{age_group}: {len(people)}")

        print(f"\nHousehold and activity arrangements:")
        print(f"Same household pairs: {len(shared_household_pairs)}")
        print(f"Different household pairs: {len(different_household_pairs)}")
        print(f"Shared primary activity pairs: {len(shared_activity_pairs)}")

        if total_with_profiles > 0:
            print("\n----- Risk Profile Distribution -----")
            print(f"Average Behaviour Risk: {behaviour_risk_avg/total_with_profiles:.1f}/100")
            print(f"Average Demographic Risk: {demographic_risk_avg/total_with_profiles:.1f}/100")
            print(f"Average Relationship Risk: {relationship_risk_avg/total_with_profiles:.1f}/100")
            print(f"Average Overall Risk: {overall_risk_avg/total_with_profiles:.1f}/100")
        # Try to include one person from each relationship type
        categories = [
            (exclusive_consensual, "exclusive consensual"),
            (exclusive_non_consensual, "exclusive non-consensual"),
            (non_exclusive, "non-exclusive")
        ]

        for category, name in categories:
            if category:
                person = np.random.choice(category)
                if person not in sample_persons:
                    sample_persons.append(person)
                    print(f"Including sample from {name} relationships")

        # Try to include one person from each orientation
        orientation_categories = [
            (heterosexual_people, "heterosexual"),
            (homosexual_people, "homosexual"),
            (bisexual_people, "bisexual")
        ]

        for category, name in orientation_categories:
            if category and len(sample_persons) < sample_size:
                candidates = [p for p in category if p not in sample_persons]
                if candidates:
                    person = np.random.choice(candidates)
                    sample_persons.append(person)
                    print(f"Including sample with {name} orientation")

        # Try to include one person from each age group
        for age_group, people in age_groups.items():
            if people and len(sample_persons) < sample_size:
                candidates = [p for p in people if p not in sample_persons]
                if candidates:
                    person = np.random.choice(candidates)
                    sample_persons.append(person)
                    print(f"Including sample from age group {age_group}")

        # Try to include a person from a couple with shared primary activity
        if shared_activity_pairs and len(sample_persons) < sample_size:
            person1, person2 = np.random.choice(shared_activity_pairs)
            if person1 not in sample_persons:
                sample_persons.append(person1)
                print(f"Including person with shared primary activity relationship")
            if person2 not in sample_persons and len(sample_persons) < sample_size:
                sample_persons.append(person2)
                print(f"Including partner with shared primary activity relationship")

        # Try to include at least one couple from same household
        if shared_household_pairs and len(sample_persons) < sample_size:
            person1, person2 = np.random.choice(shared_household_pairs)
            if person1 not in sample_persons:
                sample_persons.append(person1)
                print(f"Including person from same-household couple")
            if person2 not in sample_persons and len(sample_persons) < sample_size:
                sample_persons.append(person2)
                print(f"Including partner from same-household couple")

        # Try to include at least one couple from different households
        if different_household_pairs and len(sample_persons) < sample_size:
            person1, person2 = np.random.choice(different_household_pairs)
            if person1 not in sample_persons:
                sample_persons.append(person1)
                print(f"Including person from different-household couple")
            if person2 not in sample_persons and len(sample_persons) < sample_size:
                sample_persons.append(person2)
                print(f"Including partner from different-household couple")

        # If we need more samples to reach sample_size, add randomly from all categories
        # but try to maximise household diversity
        all_adults = exclusive_consensual + exclusive_non_consensual + non_exclusive
        np.random.shuffle(all_adults)  # Shuffle to ensure randomness

        # Fill remaining slots with unique people from diverse households
        remaining_slots = sample_size - len(sample_persons)
        for person in all_adults:
            if person not in sample_persons and remaining_slots > 0:
                # Get household ID
                household_id = "N/A"
                if hasattr(person, "residence") and person.residence and hasattr(person.residence, "group"):
                    household_id = getattr(person.residence.group, "id", "N/A")

                # Prioritise people from new households if possible
                if household_id == "N/A" or household_id not in seen_households:
                    sample_persons.append(person)
                    if household_id != "N/A":
                        seen_households.add(household_id)
                    remaining_slots -= 1

            if remaining_slots == 0:
                break

        # If we still need more people, add anyone
        if remaining_slots > 0:
            for person in all_adults:
                if person not in sample_persons and remaining_slots > 0:
                    sample_persons.append(person)
                    remaining_slots -= 1
                if remaining_slots == 0:
                    break

        # Check if we have any samples
        if not sample_persons:
            print("No eligible adults with partners found for sampling.")
            return

        # Shuffle the final sample for randomness in presentation
        np.random.shuffle(sample_persons)

        # Log each sample person
        for i, person in enumerate(sample_persons, 1):
            # Get relationship status description
            relationship_type = person.relationship_status.get("type", "unknown")
            consensual = person.relationship_status.get("consensual", True)
            relationship_desc = relationship_type

            if relationship_type == "exclusive" and not consensual:
                relationship_desc = "exclusive (non-consensual)"

            # Get household ID if available
            household_id = "N/A"
            if hasattr(person, "residence") and person.residence and hasattr(person.residence, "group"):
                household_id = getattr(person.residence.group, "id", "N/A")

            # Get primary activity info if available
            primary_activity = "N/A"
            if (hasattr(person, 'subgroups') and person.subgroups and 
                hasattr(person.subgroups, 'primary_activity') and person.subgroups.primary_activity):
                primary_activity = str(person.subgroups.primary_activity)[:30]  # Truncate if too long

            # Print person details
            print(f"\nPERSON {i}: ID {person.id}")
            print(f"├─ Age: {person.age}, Gender: {person.sex}, "  
                  f"Orientation: {getattr(person, 'sexual_orientation', 'N/A')}")

            cheater_status = ""
            if relationship_desc == "exclusive (non-consensual)" or person.id in self.potential_cheaters:
                cheater_status = f", Potential Cheater: {'Yes' if person.id in self.potential_cheaters else 'No'}"

            print(f"├─ Relationship: {relationship_desc}{cheater_status}, "  
                  f"Household: {household_id}")
            print(f"├─ Primary Activity: {primary_activity}")

            # Print friends info if available
            if hasattr(person, 'friends') and person.friends:
                friend_count = len(person.friends) if isinstance(person.friends, (list, set)) else 1
                print(f"├─ Friends: {friend_count} friends")

            # Print super area info if available
            if hasattr(person, 'area') and person.area and hasattr(person.area, 'super_area'):
                print(f"├─ Super Area: {person.area.super_area.name}")

            # Print risk profile info if available
            if hasattr(person, "sexual_risk_profile"):
                sexual_risk_profile = person.sexual_risk_profile
                print(f"├─ Risk Profile:")
                print(f"│  ├─ Behaviour Risk: {sexual_risk_profile['behaviour_risk']}/100")
                print(f"│  ├─ Demographic Risk: {sexual_risk_profile['demographic_risk']}/100")
                print(f"│  ├─ Relationship Risk: {sexual_risk_profile['relationship_risk']}/100")
                print(f"│  ├─ Overall Risk: {sexual_risk_profile['overall_risk']:.1f}/100")
                print(f"│  ├─ Testing Frequency: {sexual_risk_profile['testing_frequency']}/10 ({sexual_risk_profile['testing_category']})")
                print(f"│  └─ Testing Consistency: {sexual_risk_profile['testing_consistency']}/10")

            # Print exclusive partners if any
            if hasattr(person, "sexual_partners") and "exclusive" in person.sexual_partners and person.sexual_partners["exclusive"]:
                print("├─ Exclusive Partners:")
                for partner_id in person.sexual_partners["exclusive"]:
                    partner = self.person_dict.get(partner_id)
                    if partner:
                        partner_household = getattr(partner.residence.group, "id", "N/A") if hasattr(partner, "residence") and partner.residence else "N/A"
                        partner_rel_desc = partner.relationship_status.get("type", "unknown")
                        if partner_rel_desc == "exclusive" and not partner.relationship_status.get("consensual", True):
                            partner_rel_desc = "exclusive (non-consensual)"

                        # Check if from same super area
                        same_super_area = "No"
                        if (hasattr(person, 'area') and person.area and hasattr(person.area, 'super_area') and
                            hasattr(partner, 'area') and partner.area and hasattr(partner.area, 'super_area')):
                            same_super_area = "Yes" if person.area.super_area.name == partner.area.super_area.name else "No"

                        # Check for common friends
                        common_friends = "No"
                        if hasattr(person, 'friends') and hasattr(partner, 'friends'):
                            if isinstance(person.friends, (list, set)) and isinstance(partner.friends, (list, set)):
                                if set(person.friends).intersection(set(partner.friends)):
                                    common_friends = "Yes"

                        # Check for shared activity
                        shared_activity = "No"
                        if self._have_same_primary_activity(person, partner):
                            shared_activity = "Yes"

                        partner_activity = "N/A"
                        if (hasattr(partner, 'subgroups') and partner.subgroups and 
                            hasattr(partner.subgroups, 'primary_activity') and partner.subgroups.primary_activity):
                            partner_activity = str(partner.subgroups.primary_activity)[:30]

                        print(f"│  ├─ ID {partner.id}: Age {partner.age}, Gender: {partner.sex}, "  
                              f"Orientation: {getattr(partner, 'sexual_orientation', 'N/A')}")
                        print(f"│  ├─ Relationship: {partner_rel_desc}, Household: {partner_household}")
                        print(f"│  ├─ Primary Activity: {partner_activity}")
                        print(f"│  └─ Same Super Area: {same_super_area}, Common Friends: {common_friends}, Shared Activity: {shared_activity}")
                    else:
                        print(f"│  └─ ID {partner_id}: [Partner not found]")

            # Print non-exclusive partners if any
            if hasattr(person, "sexual_partners") and "non_exclusive" in person.sexual_partners and person.sexual_partners["non_exclusive"]:
                print("├─ Non-exclusive Partners:")
                for j, partner_id in enumerate(person.sexual_partners["non_exclusive"], 1):
                    partner = self.person_dict.get(partner_id)
                    if partner:
                        partner_household = getattr(partner.residence.group, "id", "N/A") if hasattr(partner, "residence") and partner.residence else "N/A"
                        partner_rel_desc = partner.relationship_status.get("type", "unknown")
                        if partner_rel_desc == "exclusive" and not partner.relationship_status.get("consensual", True):
                            partner_rel_desc = "exclusive (non-consensual)"

                        # Check if from same super area
                        same_super_area = "No"
                        if (hasattr(person, 'area') and person.area and hasattr(person.area, 'super_area') and
                            hasattr(partner, 'area') and partner.area and hasattr(partner.area, 'super_area')):
                            same_super_area = "Yes" if person.area.super_area.name == partner.area.super_area.name else "No"

                        # Check for common friends
                        common_friends = "No"
                        if hasattr(person, 'friends') and hasattr(partner, 'friends'):
                            if isinstance(person.friends, (list, set)) and isinstance(partner.friends, (list, set)):
                                if set(person.friends).intersection(set(partner.friends)):
                                    common_friends = "Yes"

                        # Check for shared activity
                        shared_activity = "No"
                        if self._have_same_primary_activity(person, partner):
                            shared_activity = "Yes"

                        partner_activity = "N/A"
                        if (hasattr(partner, 'subgroups') and partner.subgroups and 
                            hasattr(partner.subgroups, 'primary_activity') and partner.subgroups.primary_activity):
                            partner_activity = str(partner.subgroups.primary_activity)[:30]

                        is_last = j == len(person.sexual_partners["non_exclusive"])
                        prefix = "└─" if is_last else "├─"

                        print(f"│  {prefix} ID {partner.id}: Age {partner.age}, Gender: {partner.sex}, "  
                              f"Orientation: {getattr(partner, 'sexual_orientation', 'N/A')}")
                        print(f"{'    ' if is_last else '│  '}  ├─ Relationship: {partner_rel_desc}, Household: {partner_household}")
                        print(f"{'    ' if is_last else '│  '}  ├─ Primary Activity: {partner_activity}")
                        print(f"{'    ' if is_last else '│  '}  └─ Same Super Area: {same_super_area}, Common Friends: {common_friends}, Shared Activity: {shared_activity}")
                    else:
                        print(f"│  └─ ID {partner_id}: [Partner not found]")

        print("\n============================================================")

__init__(people=None, config_path=None, sexual_orientation_config=None, relationship_config=None, age_bins=None, partner_limit_config=None, risk_profile_config=None, random_seed=None)

Initialise the SexualRelationshipDistributor.

Parameters

people: List of all people in the simulation (optional) config_path: Path to the YAML configuration file sexual_orientation_config: Dictionary containing probabilities of sexual orientations by gender and age relationship_config: Dictionary containing probabilities for different relationship types age_bins: List of age thresholds for binning purposes partner_limit_config: Dictionary containing limits on number of partners based on age, gender, and relationship type risk_profile_config: Dictionary containing risk profile configurations random_seed: Seed for random number generators to ensure reproducibility

Source code in june/distributors/sexual_relationship_distributor.py
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
def __init__(
    self,
    people: List[Person] = None,
    config_path: str = None,
    sexual_orientation_config: Dict = None,
    relationship_config: Dict = None,
    age_bins: List[int] = None,
    partner_limit_config: Dict = None,
    risk_profile_config: Dict = None,
    random_seed: int = None
):
    """
    Initialise the SexualRelationshipDistributor.

    Parameters
    ----------
    people:
        List of all people in the simulation (optional)
    config_path:
        Path to the YAML configuration file
    sexual_orientation_config:
        Dictionary containing probabilities of sexual orientations by gender and age
    relationship_config:
        Dictionary containing probabilities for different relationship types
    age_bins:
        List of age thresholds for binning purposes
    partner_limit_config:
        Dictionary containing limits on number of partners based on age, gender, and relationship type
    risk_profile_config:
        Dictionary containing risk profile configurations
    random_seed:
        Seed for random number generators to ensure reproducibility
    """
    self.people = people  # Store people for potential future use

    # Load configurations from YAML file
    self._load_configs(config_path)

    # Override with provided configs if specified
    if sexual_orientation_config:
        self.sexual_orientation_config = sexual_orientation_config
    if relationship_config:
        self.relationship_config = relationship_config
    if age_bins:
        self.age_bins = age_bins
    if partner_limit_config:
        self.partner_limit_config = partner_limit_config
    if risk_profile_config:
        self.risk_profile_config = risk_profile_config

    self.person_dict = {}
    if people:
        for person in people:
            self.person_dict[person.id] = person

    # Add caches
    self.compatibility_cache = {}  # (person1_id, person2_id) -> bool
    self.super_area_cache = {}  # (person1_id, person2_id) -> bool
    self.primary_activity_cache = {}  # (person1_id, person2_id) -> bool
    self.common_friends_cache = {}  # (person1_id, person2_id) -> bool
    self.age_bin_cache = {}  # person_id -> age_bin_string

    # Set random seed if provided for reproducibility
    if random_seed is not None:
        self.random_seed = random_seed
        np.random.seed(random_seed)
        logger.info(f"Using random seed {random_seed} for sexual relationship distribution")
    else:
        self.random_seed = None

    # Dictionary to track potential cheaters by ID
    self.potential_cheaters = set()

    # List to track created private rooms
    self.created_private_rooms = []

create_private_room_for_person(person)

Create a private room for a person if they don't already have one.

Parameters:

Name Type Description Default
person Person

Person to create a private room for

required
Source code in june/distributors/sexual_relationship_distributor.py
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
def create_private_room_for_person(self, person: Person) -> None:
    """Create a private room for a person if they don't already have one.

    Args:
        person (Person): Person to create a private room for

    """
    # Check if person already has a private room
    if person.sexual_encounter is None:
        # Create the private room (abstract/virtual space)
        private_room = PrivateRoom(
            owner_id=person.id,
            max_occupancy=1,  # Each person gets their own room
            area=person.area,
            super_area=person.area.super_area if person.area else None
        )

        # Add the person to their private room
        private_room.add(person)

        # Track the created private room
        self.created_private_rooms.append(private_room)

distribute_area_relationships(area)

Process relationships for a single area. Uses Person helper methods where appropriate.

Parameters:

Name Type Description Default
area Area
required
Source code in june/distributors/sexual_relationship_distributor.py
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
def distribute_area_relationships(self, area: Area) -> None:
    """Process relationships for a single area.
    Uses Person helper methods where appropriate.

    Args:
        area (Area): 

    """
    # Selectively manage caches for this area
    self._selective_cache_management(area.people)

    # Gather all people in the area
    people = area.people
    adults = [p for p in people if p.age >= 18]

    # Pre-compute age bins for all adults
    for person in adults:
        self.age_bin_cache[person.id] = self._get_age_bin(person)

    # Initialise relationship status for all adults
    for person in adults:
        self._initialise_relationship_status(person)

    # 1. Identify people already in relationships vs singles
    singles = self._filter_by_relationship_type(adults, "no_partner")
    already_coupled = [p for p in adults if p not in singles]

    # Process existing household partnerships
    household_partners = defaultdict(set)
    for person in already_coupled:
        # Process existing exclusive partners
        for partner_id in person.get_partners("exclusive"):
            # Record this relationship in household_partners
            household_partners[person.id].add(partner_id)
            household_partners[partner_id].add(person.id)

            # Only process once per pair to avoid duplicate work
            if partner_id > person.id:
                partner = self.person_dict.get(partner_id)
                if partner:
                    self._assign_orientation_for_existing_couple(person, partner_id)

    # 2. Assign sexual orientations to all adults
    for person in adults:
        # Only assign if not already set
        if not hasattr(person, "sexual_orientation") or person.sexual_orientation is None:
            self._assign_sexual_orientation(person)

    # 3. Create exclusive relationships among singles based on probability
    self._create_exclusive_relationships(singles, area, household_partners)

    # 4. Handle non-exclusive relationships (casual partners and cheating)
    self._create_non_exclusive_relationships(adults, household_partners)

    # 5. Assign risk profiles to all adults
    self._assign_risk_profiles(adults)

distribute_sexual_relationships(super_areas)

Main method to distribute sexual relationships across all super areas.

Parameters:

Name Type Description Default
super_areas List[SuperArea]

List of super areas to process

required
Source code in june/distributors/sexual_relationship_distributor.py
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
def distribute_sexual_relationships(self, super_areas: List[SuperArea]) -> None:
    """Main method to distribute sexual relationships across all super areas.

    Args:
        super_areas (List[SuperArea]): List of super areas to process

    """
    logger.info("Distributing sexual relationships and orientations")

    # Build a complete person dictionary for the whole simulation
    self.person_dict = {}
    for super_area in super_areas:
        for area in super_area.areas:
            for person in area.people:
                self.person_dict[person.id] = person

    # Track total areas processed for logging
    total_areas = sum(len(super_area.areas) for super_area in super_areas)
    areas_processed = 0

    # Process each super area and its contained areas
    for super_area in super_areas:
        for area in super_area.areas:
            self.distribute_area_relationships(area)
            areas_processed += 1

            # Log progress periodically
            if areas_processed % 1000 == 0:
                logger.info(f"Processed sexual relationships for {areas_processed} areas of {total_areas}")

    logger.info("Completed sexual relationship distribution")

    # Print some statistics for verification
    self._print_relationship_statistics(super_areas)

log_sample_persons(super_areas, sample_size=10)

Log detailed information about a sample of persons including their relationships. Ensures we sample a diverse set of relationship types, orientations, and living arrangements.

Parameters:

Name Type Description Default
super_areas List[SuperArea]

List of all super areas

required
sample_size int

Number of persons to sample (default: 10)

10
Source code in june/distributors/sexual_relationship_distributor.py
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
def log_sample_persons(self, super_areas: List[SuperArea], sample_size: int = 10) -> None:
    """Log detailed information about a sample of persons including their relationships.
    Ensures we sample a diverse set of relationship types, orientations, and living arrangements.

    Args:
        super_areas (List[SuperArea]): List of all super areas
        sample_size (int, optional): Number of persons to sample (default: 10)

    """
    print("\n============================================================")
    print("           SAMPLE PERSONS WITH RELATIONSHIP DETAILS")
    print("============================================================")

    # Group adults by various attributes for diverse sampling
    # By relationship type
    exclusive_consensual = []
    exclusive_non_consensual = []
    non_exclusive = []

    # By orientation
    heterosexual_people = []
    homosexual_people = []
    bisexual_people = []

    # By household arrangement
    shared_household_pairs = []  # Pairs of partners living in same household
    different_household_pairs = []  # Pairs of partners in different households

    # By shared activity
    shared_activity_pairs = []  # Pairs who share primary activity

    # By age group
    age_groups = {
        "18-25": [],
        "26-35": [],
        "36-50": [],
        "51-64": [],
        "65+": []
    }

    # Track all households with partners
    household_map = {}  # household_id -> list of people

    # Risk profile statistics
    behaviour_risk_avg = 0
    demographic_risk_avg = 0
    relationship_risk_avg = 0
    overall_risk_avg = 0
    total_with_profiles = 0

    for super_area in super_areas:
        for area in super_area.areas:
            for person in area.people:
                if person.age < 18 or not hasattr(person, "relationship_status"):
                    continue

                rel_type = person.relationship_status.get("type", "unknown")
                consensual = person.relationship_status.get("consensual", True)

                if hasattr(person, "sexual_risk_profile"):                 
                    total_with_profiles += 1
                    sexual_risk_profile = person.sexual_risk_profile
                    behaviour_risk_avg += sexual_risk_profile["behaviour_risk"]
                    demographic_risk_avg += sexual_risk_profile["demographic_risk"]
                    relationship_risk_avg += sexual_risk_profile["relationship_risk"]
                    overall_risk_avg += sexual_risk_profile["overall_risk"]

                # Skip people with no partners
                if rel_type == "no_partner":
                    continue

                # Make sure they have actual partners
                if not hasattr(person, "sexual_partners") or not any(person.sexual_partners.values()):
                    continue

                # Add to age group
                if person.age < 26:
                    age_groups["18-25"].append(person)
                elif person.age < 36:
                    age_groups["26-35"].append(person)
                elif person.age < 51:
                    age_groups["36-50"].append(person)
                elif person.age < 65:
                    age_groups["51-64"].append(person)
                else:
                    age_groups["65+"].append(person)

                # Get person's household ID
                household_id = "N/A"
                if (hasattr(person, "residence") and person.residence and 
                    hasattr(person.residence, "group")):
                    household_id = getattr(person.residence.group, "id", "N/A")

                    # Track people by household
                    if household_id not in household_map:
                        household_map[household_id] = []
                    household_map[household_id].append(person)

                # Group by sexual orientation
                orientation = getattr(person, "sexual_orientation", "unknown")
                if orientation == "heterosexual":
                    heterosexual_people.append(person)
                elif orientation == "homosexual":
                    homosexual_people.append(person)
                elif orientation == "bisexual":
                    bisexual_people.append(person)

                # Add to appropriate relationship category
                if rel_type == "exclusive":
                    if consensual:
                        exclusive_consensual.append(person)
                    else:
                        exclusive_non_consensual.append(person)
                elif rel_type == "non_exclusive":
                    non_exclusive.append(person)

                # Find pairs living in same/different households
                if hasattr(person, "sexual_partners"):
                    partner_types = ["exclusive", "non_exclusive"]
                    for partner_type in partner_types:
                        if partner_type in person.sexual_partners:
                            for partner_id in person.sexual_partners[partner_type]:
                                partner = self.person_dict.get(partner_id)
                                if partner and partner.id > person.id:  # Avoid duplicates
                                    # Check for shared household
                                    partner_household = "N/A"
                                    if (hasattr(partner, "residence") and partner.residence and 
                                        hasattr(partner.residence, "group")):
                                        partner_household = getattr(partner.residence.group, "id", "N/A")

                                    if household_id != "N/A" and household_id == partner_household:
                                        shared_household_pairs.append((person, partner))
                                    elif household_id != "N/A" and partner_household != "N/A" and household_id != partner_household:
                                        different_household_pairs.append((person, partner))

                                    # Check for shared activity
                                    if self._have_same_primary_activity(person, partner):
                                        shared_activity_pairs.append((person, partner))

    # Create a diverse sample
    sample_persons = []
    seen_households = set()  # To track household diversity

    # Print category counts
    print(f"\nCandidate pools:")
    print(f"Exclusive consensual: {len(exclusive_consensual)}")
    print(f"Exclusive non-consensual: {len(exclusive_non_consensual)}")
    print(f"Non-exclusive: {len(non_exclusive)}")
    print(f"Heterosexual people: {len(heterosexual_people)}")
    print(f"Homosexual people: {len(homosexual_people)}")
    print(f"Bisexual people: {len(bisexual_people)}")

    print(f"\nAge groups:")
    for age_group, people in age_groups.items():
        print(f"{age_group}: {len(people)}")

    print(f"\nHousehold and activity arrangements:")
    print(f"Same household pairs: {len(shared_household_pairs)}")
    print(f"Different household pairs: {len(different_household_pairs)}")
    print(f"Shared primary activity pairs: {len(shared_activity_pairs)}")

    if total_with_profiles > 0:
        print("\n----- Risk Profile Distribution -----")
        print(f"Average Behaviour Risk: {behaviour_risk_avg/total_with_profiles:.1f}/100")
        print(f"Average Demographic Risk: {demographic_risk_avg/total_with_profiles:.1f}/100")
        print(f"Average Relationship Risk: {relationship_risk_avg/total_with_profiles:.1f}/100")
        print(f"Average Overall Risk: {overall_risk_avg/total_with_profiles:.1f}/100")
    # Try to include one person from each relationship type
    categories = [
        (exclusive_consensual, "exclusive consensual"),
        (exclusive_non_consensual, "exclusive non-consensual"),
        (non_exclusive, "non-exclusive")
    ]

    for category, name in categories:
        if category:
            person = np.random.choice(category)
            if person not in sample_persons:
                sample_persons.append(person)
                print(f"Including sample from {name} relationships")

    # Try to include one person from each orientation
    orientation_categories = [
        (heterosexual_people, "heterosexual"),
        (homosexual_people, "homosexual"),
        (bisexual_people, "bisexual")
    ]

    for category, name in orientation_categories:
        if category and len(sample_persons) < sample_size:
            candidates = [p for p in category if p not in sample_persons]
            if candidates:
                person = np.random.choice(candidates)
                sample_persons.append(person)
                print(f"Including sample with {name} orientation")

    # Try to include one person from each age group
    for age_group, people in age_groups.items():
        if people and len(sample_persons) < sample_size:
            candidates = [p for p in people if p not in sample_persons]
            if candidates:
                person = np.random.choice(candidates)
                sample_persons.append(person)
                print(f"Including sample from age group {age_group}")

    # Try to include a person from a couple with shared primary activity
    if shared_activity_pairs and len(sample_persons) < sample_size:
        person1, person2 = np.random.choice(shared_activity_pairs)
        if person1 not in sample_persons:
            sample_persons.append(person1)
            print(f"Including person with shared primary activity relationship")
        if person2 not in sample_persons and len(sample_persons) < sample_size:
            sample_persons.append(person2)
            print(f"Including partner with shared primary activity relationship")

    # Try to include at least one couple from same household
    if shared_household_pairs and len(sample_persons) < sample_size:
        person1, person2 = np.random.choice(shared_household_pairs)
        if person1 not in sample_persons:
            sample_persons.append(person1)
            print(f"Including person from same-household couple")
        if person2 not in sample_persons and len(sample_persons) < sample_size:
            sample_persons.append(person2)
            print(f"Including partner from same-household couple")

    # Try to include at least one couple from different households
    if different_household_pairs and len(sample_persons) < sample_size:
        person1, person2 = np.random.choice(different_household_pairs)
        if person1 not in sample_persons:
            sample_persons.append(person1)
            print(f"Including person from different-household couple")
        if person2 not in sample_persons and len(sample_persons) < sample_size:
            sample_persons.append(person2)
            print(f"Including partner from different-household couple")

    # If we need more samples to reach sample_size, add randomly from all categories
    # but try to maximise household diversity
    all_adults = exclusive_consensual + exclusive_non_consensual + non_exclusive
    np.random.shuffle(all_adults)  # Shuffle to ensure randomness

    # Fill remaining slots with unique people from diverse households
    remaining_slots = sample_size - len(sample_persons)
    for person in all_adults:
        if person not in sample_persons and remaining_slots > 0:
            # Get household ID
            household_id = "N/A"
            if hasattr(person, "residence") and person.residence and hasattr(person.residence, "group"):
                household_id = getattr(person.residence.group, "id", "N/A")

            # Prioritise people from new households if possible
            if household_id == "N/A" or household_id not in seen_households:
                sample_persons.append(person)
                if household_id != "N/A":
                    seen_households.add(household_id)
                remaining_slots -= 1

        if remaining_slots == 0:
            break

    # If we still need more people, add anyone
    if remaining_slots > 0:
        for person in all_adults:
            if person not in sample_persons and remaining_slots > 0:
                sample_persons.append(person)
                remaining_slots -= 1
            if remaining_slots == 0:
                break

    # Check if we have any samples
    if not sample_persons:
        print("No eligible adults with partners found for sampling.")
        return

    # Shuffle the final sample for randomness in presentation
    np.random.shuffle(sample_persons)

    # Log each sample person
    for i, person in enumerate(sample_persons, 1):
        # Get relationship status description
        relationship_type = person.relationship_status.get("type", "unknown")
        consensual = person.relationship_status.get("consensual", True)
        relationship_desc = relationship_type

        if relationship_type == "exclusive" and not consensual:
            relationship_desc = "exclusive (non-consensual)"

        # Get household ID if available
        household_id = "N/A"
        if hasattr(person, "residence") and person.residence and hasattr(person.residence, "group"):
            household_id = getattr(person.residence.group, "id", "N/A")

        # Get primary activity info if available
        primary_activity = "N/A"
        if (hasattr(person, 'subgroups') and person.subgroups and 
            hasattr(person.subgroups, 'primary_activity') and person.subgroups.primary_activity):
            primary_activity = str(person.subgroups.primary_activity)[:30]  # Truncate if too long

        # Print person details
        print(f"\nPERSON {i}: ID {person.id}")
        print(f"├─ Age: {person.age}, Gender: {person.sex}, "  
              f"Orientation: {getattr(person, 'sexual_orientation', 'N/A')}")

        cheater_status = ""
        if relationship_desc == "exclusive (non-consensual)" or person.id in self.potential_cheaters:
            cheater_status = f", Potential Cheater: {'Yes' if person.id in self.potential_cheaters else 'No'}"

        print(f"├─ Relationship: {relationship_desc}{cheater_status}, "  
              f"Household: {household_id}")
        print(f"├─ Primary Activity: {primary_activity}")

        # Print friends info if available
        if hasattr(person, 'friends') and person.friends:
            friend_count = len(person.friends) if isinstance(person.friends, (list, set)) else 1
            print(f"├─ Friends: {friend_count} friends")

        # Print super area info if available
        if hasattr(person, 'area') and person.area and hasattr(person.area, 'super_area'):
            print(f"├─ Super Area: {person.area.super_area.name}")

        # Print risk profile info if available
        if hasattr(person, "sexual_risk_profile"):
            sexual_risk_profile = person.sexual_risk_profile
            print(f"├─ Risk Profile:")
            print(f"│  ├─ Behaviour Risk: {sexual_risk_profile['behaviour_risk']}/100")
            print(f"│  ├─ Demographic Risk: {sexual_risk_profile['demographic_risk']}/100")
            print(f"│  ├─ Relationship Risk: {sexual_risk_profile['relationship_risk']}/100")
            print(f"│  ├─ Overall Risk: {sexual_risk_profile['overall_risk']:.1f}/100")
            print(f"│  ├─ Testing Frequency: {sexual_risk_profile['testing_frequency']}/10 ({sexual_risk_profile['testing_category']})")
            print(f"│  └─ Testing Consistency: {sexual_risk_profile['testing_consistency']}/10")

        # Print exclusive partners if any
        if hasattr(person, "sexual_partners") and "exclusive" in person.sexual_partners and person.sexual_partners["exclusive"]:
            print("├─ Exclusive Partners:")
            for partner_id in person.sexual_partners["exclusive"]:
                partner = self.person_dict.get(partner_id)
                if partner:
                    partner_household = getattr(partner.residence.group, "id", "N/A") if hasattr(partner, "residence") and partner.residence else "N/A"
                    partner_rel_desc = partner.relationship_status.get("type", "unknown")
                    if partner_rel_desc == "exclusive" and not partner.relationship_status.get("consensual", True):
                        partner_rel_desc = "exclusive (non-consensual)"

                    # Check if from same super area
                    same_super_area = "No"
                    if (hasattr(person, 'area') and person.area and hasattr(person.area, 'super_area') and
                        hasattr(partner, 'area') and partner.area and hasattr(partner.area, 'super_area')):
                        same_super_area = "Yes" if person.area.super_area.name == partner.area.super_area.name else "No"

                    # Check for common friends
                    common_friends = "No"
                    if hasattr(person, 'friends') and hasattr(partner, 'friends'):
                        if isinstance(person.friends, (list, set)) and isinstance(partner.friends, (list, set)):
                            if set(person.friends).intersection(set(partner.friends)):
                                common_friends = "Yes"

                    # Check for shared activity
                    shared_activity = "No"
                    if self._have_same_primary_activity(person, partner):
                        shared_activity = "Yes"

                    partner_activity = "N/A"
                    if (hasattr(partner, 'subgroups') and partner.subgroups and 
                        hasattr(partner.subgroups, 'primary_activity') and partner.subgroups.primary_activity):
                        partner_activity = str(partner.subgroups.primary_activity)[:30]

                    print(f"│  ├─ ID {partner.id}: Age {partner.age}, Gender: {partner.sex}, "  
                          f"Orientation: {getattr(partner, 'sexual_orientation', 'N/A')}")
                    print(f"│  ├─ Relationship: {partner_rel_desc}, Household: {partner_household}")
                    print(f"│  ├─ Primary Activity: {partner_activity}")
                    print(f"│  └─ Same Super Area: {same_super_area}, Common Friends: {common_friends}, Shared Activity: {shared_activity}")
                else:
                    print(f"│  └─ ID {partner_id}: [Partner not found]")

        # Print non-exclusive partners if any
        if hasattr(person, "sexual_partners") and "non_exclusive" in person.sexual_partners and person.sexual_partners["non_exclusive"]:
            print("├─ Non-exclusive Partners:")
            for j, partner_id in enumerate(person.sexual_partners["non_exclusive"], 1):
                partner = self.person_dict.get(partner_id)
                if partner:
                    partner_household = getattr(partner.residence.group, "id", "N/A") if hasattr(partner, "residence") and partner.residence else "N/A"
                    partner_rel_desc = partner.relationship_status.get("type", "unknown")
                    if partner_rel_desc == "exclusive" and not partner.relationship_status.get("consensual", True):
                        partner_rel_desc = "exclusive (non-consensual)"

                    # Check if from same super area
                    same_super_area = "No"
                    if (hasattr(person, 'area') and person.area and hasattr(person.area, 'super_area') and
                        hasattr(partner, 'area') and partner.area and hasattr(partner.area, 'super_area')):
                        same_super_area = "Yes" if person.area.super_area.name == partner.area.super_area.name else "No"

                    # Check for common friends
                    common_friends = "No"
                    if hasattr(person, 'friends') and hasattr(partner, 'friends'):
                        if isinstance(person.friends, (list, set)) and isinstance(partner.friends, (list, set)):
                            if set(person.friends).intersection(set(partner.friends)):
                                common_friends = "Yes"

                    # Check for shared activity
                    shared_activity = "No"
                    if self._have_same_primary_activity(person, partner):
                        shared_activity = "Yes"

                    partner_activity = "N/A"
                    if (hasattr(partner, 'subgroups') and partner.subgroups and 
                        hasattr(partner.subgroups, 'primary_activity') and partner.subgroups.primary_activity):
                        partner_activity = str(partner.subgroups.primary_activity)[:30]

                    is_last = j == len(person.sexual_partners["non_exclusive"])
                    prefix = "└─" if is_last else "├─"

                    print(f"│  {prefix} ID {partner.id}: Age {partner.age}, Gender: {partner.sex}, "  
                          f"Orientation: {getattr(partner, 'sexual_orientation', 'N/A')}")
                    print(f"{'    ' if is_last else '│  '}  ├─ Relationship: {partner_rel_desc}, Household: {partner_household}")
                    print(f"{'    ' if is_last else '│  '}  ├─ Primary Activity: {partner_activity}")
                    print(f"{'    ' if is_last else '│  '}  └─ Same Super Area: {same_super_area}, Common Friends: {common_friends}, Shared Activity: {shared_activity}")
                else:
                    print(f"│  └─ ID {partner_id}: [Partner not found]")

    print("\n============================================================")