70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493 | class WorkerDistributorNew:
"""New Worker Distributor that uses LAD-based likelihood data to assign work locations.
This distributor:
1. Maps person's area to their LAD using geography data
2. Uses likelihood data to determine which destination LAD they work in
3. Maps destination LAD to a specific super area (MSOA)
4. Assigns work sector and lockdown status using existing logic
"""
def __init__(
self,
likelihood_df: pd.DataFrame,
geography_df: pd.DataFrame,
workers_df: pd.DataFrame,
sex_industry_df: pd.DataFrame,
company_closure: dict,
age_range: List[int],
sub_sector_ratio: dict,
sub_sector_distr: dict,
non_geographical_work_location: dict,
):
"""
Args:
likelihood_df (pd.DataFrame):
DataFrame with origin LAD, destination LAD, and likelihood of working there
geography_df (pd.DataFrame):
DataFrame mapping area -> msoa -> lad -> region
workers_df (pd.DataFrame):
DataFrame with industry-specific employment data by output area and MSOA
company_closure (dict):
Lockdown status probabilities by sector
age_range (List[int]):
Min and max age for workers
sub_sector_ratio (dict):
Key sector ratios by sex
sub_sector_distr (dict):
Key sector distributions by sex
non_geographical_work_location (dict):
Special work locations (home, offshore, etc.)
"""
self.likelihood_df = likelihood_df
self.geography_df = geography_df
self.workers_df = workers_df
self.sex_industry_df = sex_industry_df
self.age_range = age_range
self.sub_sector_ratio = sub_sector_ratio
self.sub_sector_distr = sub_sector_distr
self.non_geographical_work_location = non_geographical_work_location
self.company_closure = company_closure
self._boundary_workers_counter = count()
self.n_boundary_workers = 0
# Simplified statistics tracking
self.stats = {
'total_workers': 0,
'assigned_by_lad_likelihood': 0,
'assigned_home': 0,
'assigned_out_of_scope': 0,
'assigned_first_try_msoa': 0,
'assigned_bounced_back_msoa': 0,
'assigned_cross_border_ew_to_scotland': 0,
'assigned_with_industry_data': 0,
'industry_assignments': {},
'work_mode_assignments': {}, # Track work mode assignments (Normal/Hybrid/From_Home)
'msoa_sector_allocations': {}, # Track allocated workers by MSOA and sector
'msoa_sector_sex_allocations': {}, # Track allocated workers by MSOA, sector, and sex
'sub_sector_assignments': {}, # Track sub-sector assignments
'sub_sector_samples': [] # Sample of people with sub-sectors for display
}
# Create lookup dictionaries for efficient mapping
self._create_geography_lookups()
self._create_likelihood_lookups()
self._process_workers_data()
self._process_sex_industry_data()
# Pre-compute capacity data structure for performance
self._capacity_lookup = None
self._world_msoas_cache = None
# Initialize performance caches
self._scottish_lad_cache = {}
self._geography_lads_with_scottish_areas = None
self._pre_build_lad_regional_cache()
# Worker distribution optimization caches
self._lad_msoa_probabilities_cache = {} # Pre-computed MSOA selection probabilities by LAD
self._capacity_arrays = {} # Numpy arrays for fast capacity tracking
def _pre_build_lad_regional_cache(self):
"""Pre-build LAD regional cache from geography files - no hardcoded lists"""
# Load all regional geography files to determine LAD regions dynamically
self._scottish_lads = set()
self._northern_ireland_lads = set()
# Load Scottish LADs from file
try:
sc_file = paths.data_path / "input/geography/SC_oa_msoa_lad_regions.csv"
if sc_file.exists():
sc_geo_df = pd.read_csv(sc_file)
self._scottish_lads = set(sc_geo_df['lad'].unique())
logger.info(f"Loaded {len(self._scottish_lads)} Scottish LADs from {sc_file}")
else:
logger.warning(f"Scottish geography file not found: {sc_file}")
except Exception as e:
logger.warning(f"Failed to load Scottish geography file: {e}")
# Load Northern Ireland LADs from file
try:
ni_file = paths.data_path / "input/geography/NI_dz_sdz_lgd_lookup.csv"
if ni_file.exists():
ni_geo_df = pd.read_csv(ni_file)
self._northern_ireland_lads = set(ni_geo_df['lad'].unique())
logger.info(f"Loaded {len(self._northern_ireland_lads)} Northern Ireland LADs from {ni_file}")
else:
logger.warning(f"Northern Ireland geography file not found: {ni_file}")
except Exception as e:
logger.warning(f"Failed to load Northern Ireland geography file: {e}")
# Build cache from loaded geography data
if not self.geography_df.empty:
# Vectorized operation: filter rows where area starts with 'S'
scottish_mask = self.geography_df['area'].str.startswith('S', na=False)
scottish_lads_from_data = set(self.geography_df.loc[scottish_mask, 'lad'].unique())
# Combine file-based and data-based Scottish LADs
self._scottish_lads = self._scottish_lads.union(scottish_lads_from_data)
self._geography_lads_with_scottish_areas = self._scottish_lads
# Pre-cache all regional LADs for fast lookup
for lad in self._scottish_lads:
self._scottish_lad_cache[lad] = True
for lad in self._northern_ireland_lads:
self._scottish_lad_cache[lad] = False # NI LADs are not Scottish
logger.info(f"Regional LAD cache built: {len(self._scottish_lads)} Scottish, {len(self._northern_ireland_lads)} Northern Ireland")
def _create_geography_lookups(self):
"""Create lookup dictionaries for area->LAD and LAD->MSOA mappings"""
# Area to LAD mapping - already vectorized
self.area_to_lad = dict(zip(self.geography_df['area'], self.geography_df['lad']))
# LAD to MSOAs mapping (one LAD can have multiple MSOAs) - vectorized
# Group by LAD and collect unique MSOAs
self.lad_to_msoas = (
self.geography_df.groupby('lad')['msoa']
.apply(lambda x: x.unique().tolist())
.to_dict()
)
def _create_likelihood_lookups(self):
"""Create lookup dictionaries for origin LAD -> destination LAD likelihoods with work types"""
# Vectorized approach using groupby
grouped = self.likelihood_df.groupby('Origin area name')
self.origin_destinations = {}
for origin, group in grouped:
destinations = group['Destination area name'].tolist()
work_types = group['Place of work indicator'].tolist()
likelihoods = group['Likelihood'].tolist()
# Create discrete distribution for sampling
self.origin_destinations[origin] = {
'destinations': destinations,
'work_types': work_types,
'likelihoods': likelihoods,
'rv': rv_discrete(values=(np.arange(len(destinations)), likelihoods))
}
def _process_workers_data(self):
"""Process workers data for industry-specific allocation"""
# Identify industry columns (exclude geography and total columns)
non_industry_cols = ['output_area', 'msoa', 'lad', 'Total']
self.industry_columns = [col for col in self.workers_df.columns if col not in non_industry_cols]
# Separate MSOA aggregations (ALL rows) from individual output areas
self.msoa_aggregations = self.workers_df[self.workers_df['output_area'] == 'ALL'].copy()
self.oa_data = self.workers_df[self.workers_df['output_area'] != 'ALL'].copy()
# Create MSOA employment capacity lookup - vectorized
self.msoa_employment_capacity = dict(zip(
self.msoa_aggregations['msoa'],
self.msoa_aggregations['Total']
))
# Create industry profiles - fully vectorized processing
self.msoa_industry_profiles = {}
epsilon = 1e-10
# Process all MSOAs at once
industry_data = self.msoa_aggregations[self.industry_columns].values.astype(float)
safe_counts = industry_data + epsilon
industry_probs = safe_counts / np.sum(safe_counts, axis=1, keepdims=True)
# Create profiles for all MSOAs without iterrows
msoa_list = self.msoa_aggregations['msoa'].tolist()
for idx, msoa in enumerate(msoa_list):
self.msoa_industry_profiles[msoa] = {
'counts': industry_data[idx],
'probabilities': industry_probs[idx],
'rv': rv_discrete(values=(np.arange(len(self.industry_columns)), industry_probs[idx]))
}
# Track allocated workers per MSOA to respect capacity constraints
# Only initialize for MSOAs that will exist in the world (we'll populate this during distribute())
self.allocated_workers_per_msoa = {}
def _process_sex_industry_data(self):
"""Process sex-industry data for LAD-level sex bias in industry allocation"""
# Create sex-industry probability distributions by LAD - vectorized
self.sex_industry_profiles = {}
epsilon = 1e-10
# Group by LAD and Sex for efficient processing
grouped = self.sex_industry_df.groupby(['LAD', 'Sex'])
for (lad, sex), group in grouped:
if lad not in self.sex_industry_profiles:
self.sex_industry_profiles[lad] = {}
# Get industry employment counts (exclude LAD, Sex, Total columns)
industry_counts = group[self.industry_columns].iloc[0].values.astype(float)
# Add small epsilon to prevent zero probabilities
safe_counts = industry_counts + epsilon
industry_probs = safe_counts / np.sum(safe_counts)
self.sex_industry_profiles[lad][sex] = {
'counts': industry_counts,
'probabilities': industry_probs,
'rv': rv_discrete(values=(np.arange(len(self.industry_columns)), industry_probs))
}
def distribute(self, areas: Areas, super_areas: SuperAreas, population: Population = None):
"""Assign work locations and sectors to eligible people using LAD-based likelihood data.
Args:
areas (Areas):
super_areas (SuperAreas):
population (Population, optional): (Default value = None)
"""
self.areas = areas
self.super_areas = super_areas
# Cache world MSOAs for performance - compute once
self._world_msoas_cache = set(super_area.name for super_area in self.super_areas.members)
# Initialize worker tracking only for MSOAs that exist in this world
self.allocated_workers_per_msoa = {msoa: 0 for msoa in self._world_msoas_cache
if msoa in self.msoa_employment_capacity}
# Pre-compute capacity lookup for performance optimization
self._build_capacity_lookup()
# Pre-compute LAD MSOA selection probabilities (major optimization)
self._build_lad_msoa_probabilities_cache()
# Pre-compute global MSOA selection distribution for massive performance gain
self._build_global_msoa_distribution()
# Pre-compute LAD destination selections to eliminate expensive scipy rv.rvs() calls
self._build_lad_destination_distributions()
# Pre-compute industry probability matrices to eliminate expensive numpy operations per worker
self._build_industry_probability_cache()
# Set up lockdown status arrays
lockdown_tags = np.array(["key_worker", "random", "furlough"])
lockdown_tags_idx = np.arange(0, len(lockdown_tags))
lockdown_tags_probabilities_by_sector = (
self._parse_closure_probabilities_by_sector(
company_closure=self.company_closure, lockdown_tags=lockdown_tags
)
)
logger.info("Distributing workers to work locations...")
# Pre-calculate total areas and workers for better progress logging
total_areas = len(self.areas)
total_eligible_workers = 0
areas_with_workers = 0
# First pass: count total eligible workers for progress tracking
for area in self.areas:
area_workers = sum(1 for person in area.people
if person.primary_activity is None and self.age_range[0] <= person.age <= self.age_range[1])
if area_workers > 0:
areas_with_workers += 1
total_eligible_workers += area_workers
logger.info(f"Found {total_eligible_workers:,} eligible workers across {areas_with_workers:,}/{total_areas:,} areas")
worker_samples = []
processed_areas = 0
processed_workers = 0
for i, area in enumerate(iter(self.areas)):
area_workers = sum(1 for person in area.people if person.primary_activity is None and self.age_range[0] <= person.age <= self.age_range[1])
# Enhanced progress logging - more frequent for better feedback
if i % 100 == 0: # Log every 50 areas or areas with workers
percent_complete = (i / total_areas) * 100
worker_percent = (processed_workers / max(total_eligible_workers, 1)) * 100
logger.info(f"Processing area {i+1:,}/{total_areas:,} ({percent_complete:.1f}%): {area.name} - {area_workers:,} eligible workers | Total processed: {processed_workers:,}/{total_eligible_workers:,} workers ({worker_percent:.1f}%)")
if area_workers > 0:
processed_areas += 1
# Set up lockdown status lottery for this area
self._lockdown_status_lottery(len(area.people))
# Get LAD for this area
area_lad = self._get_area_lad(area.name)
for person in area.people:
if person.primary_activity is not None:
continue
if self.age_range[0] <= person.age <= self.age_range[1]:
# Assign work location using LAD-based likelihood
# This also assigns the sector based on industry data
self._assign_work_location_by_lad(person, area_lad)
# Assign lockdown status
self._assign_lockdown_status(
lockdown_tags_probabilities_by_sector,
lockdown_tags,
lockdown_tags_idx,
person,
)
# Track processed workers for progress logging
processed_workers += 1
# Collect sample data
worker_samples.append({
"| Person ID": person.id,
"| Home Area": area.name,
"| Home LAD": area_lad,
"| Person Age": person.age,
"| Assigned Work Super Area": person.work_super_area.name if person.work_super_area else "No Assignment",
"| Assigned Work Sector": getattr(person, 'sector', None),
"| Work Mode": getattr(person, 'work_mode', None),
"| Lockdown Status": getattr(person, 'lockdown_status', None),
})
# Final completion message
logger.info(f"Worker distribution completed: {processed_workers:,}/{total_eligible_workers:,} workers distributed across {processed_areas:,}/{areas_with_workers:,} areas with workers")
if worker_samples:
df_sample = pd.DataFrame(worker_samples).sample(n=min(10, len(worker_samples)))
print("\n===== Sample of Workers Distributed Using LAD-based Likelihood =====")
print(df_sample.to_string(index=False))
# Print aggregated statistics summary
#self._print_allocation_summary()
logger.info(f"{len(worker_samples)} workers distributed.")
# Clear caches to free memory
self._world_msoas_cache = None
self._capacity_lookup = None
self._global_msoa_selections = None
self._global_msoa_idx = None
self._lad_destination_cache = None
self._industry_probability_cache = None
def _get_area_lad(self, area_name: str) -> str:
"""Get LAD for given area name
Args:
area_name (str):
"""
return self.area_to_lad[area_name]
def _build_capacity_lookup(self):
"""Pre-build capacity lookup data structure for performance"""
self._capacity_lookup = {}
for msoa_name in self._world_msoas_cache:
if msoa_name in self.msoa_employment_capacity:
capacity = self.msoa_employment_capacity[msoa_name]
allocated = self.allocated_workers_per_msoa.get(msoa_name, 0)
max_capacity = capacity * 1.2
available_capacity = max(1, max_capacity - allocated)
self._capacity_lookup[msoa_name] = {
'capacity': capacity,
'max_capacity': max_capacity,
'allocated': allocated,
'available': available_capacity,
'has_space': allocated < max_capacity
}
def _build_lad_msoa_probabilities_cache(self):
"""Pre-compute MSOA selection probabilities for each LAD.
This eliminates 37M list building + probability calculation operations.
"""
logger.info("Pre-computing MSOA selection probabilities by LAD...")
for lad_name, msoas_in_lad in self.lad_to_msoas.items():
# Get available MSOAs and their capacity weights
available_msoas = []
capacity_weights = []
for msoa in msoas_in_lad:
if msoa in self._capacity_lookup:
available_msoas.append(msoa)
capacity_weights.append(self._capacity_lookup[msoa]['capacity'])
if not available_msoas:
continue
# Pre-compute normalized probabilities
total_weight = sum(capacity_weights)
if total_weight > 0:
probabilities = np.array([w / total_weight for w in capacity_weights], dtype=np.float64)
else:
probabilities = np.ones(len(available_msoas), dtype=np.float64) / len(available_msoas)
# Cache the results
self._lad_msoa_probabilities_cache[lad_name] = {
'msoas': np.array(available_msoas),
'probabilities': probabilities
}
logger.info(f"Pre-computed probabilities for {len(self._lad_msoa_probabilities_cache)} LADs")
def _build_global_msoa_distribution(self):
"""Pre-compute global MSOA selection distribution for massive performance gain.
Instead of computing weights for every worker (O(workers × MSOAs)),
pre-compute a large array of MSOA selections based on capacity weights.
This reduces O(workers × MSOAs) to O(1) per worker.
"""
if not self._capacity_lookup:
logger.warning("Capacity lookup not built yet, skipping global MSOA distribution")
return
logger.info(f"Building pre-computed global MSOA distribution for {len(self._capacity_lookup)} MSOAs...")
# Extract MSOAs and their capacity weights
msoas = list(self._capacity_lookup.keys())
capacity_weights = [self._capacity_lookup[msoa]['capacity'] for msoa in msoas]
if not msoas:
logger.warning("No MSOAs available for global distribution")
self._global_msoa_selections = []
self._global_msoa_idx = 0
return
# Normalize to probabilities
total_weight = sum(capacity_weights)
if total_weight == 0:
logger.warning("Total capacity weight is zero, using uniform distribution")
probabilities = [1.0/len(msoas) for _ in msoas]
else:
probabilities = [w/total_weight for w in capacity_weights]
# Pre-compute a large array of MSOA selections (100K selections should be enough)
# This is much faster than computing probabilities for each worker
selection_size = min(100000, max(10000, len(msoas) * 100))
self._global_msoa_selections = np.random.choice(msoas, size=selection_size, p=probabilities)
self._global_msoa_idx = 0
logger.info(f"Pre-computed {len(self._global_msoa_selections)} MSOA selections from {len(msoas)} MSOAs")
def _build_lad_destination_distributions(self):
"""Pre-compute LAD destination selections for massive performance gain.
Instead of calling expensive scipy rv.rvs() for every worker (380K calls),
pre-compute arrays of destination selections for each origin LAD.
This eliminates 30M+ scipy calls for full UK runs!
"""
logger.info(f"Building pre-computed LAD destination distributions for {len(self.origin_destinations)} origin LADs...")
self._lad_destination_cache = {}
total_precomputed = 0
for origin_lad, destinations_data in self.origin_destinations.items():
if len(destinations_data['destinations']) == 0:
logger.warning(f"No destinations for origin LAD: {origin_lad}")
self._lad_destination_cache[origin_lad] = {
'dest_selections': [],
'work_type_selections': [],
'index': 0
}
continue
# Pre-compute a large array of destination selections for this origin LAD
# Size based on expected workers (more for busy LADs, minimum for all)
selection_size = min(50000, max(1000, len(destinations_data['destinations']) * 50))
# Pre-compute destination indices using the rv distribution
rv_sampler = destinations_data['rv']
dest_indices = rv_sampler.rvs(size=selection_size)
# Convert indices to actual destination LADs and work types
destinations = destinations_data['destinations']
work_types = destinations_data['work_types']
dest_selections = [destinations[idx] for idx in dest_indices]
work_type_selections = [work_types[idx] for idx in dest_indices]
self._lad_destination_cache[origin_lad] = {
'dest_selections': dest_selections,
'work_type_selections': work_type_selections,
'index': 0
}
total_precomputed += selection_size
logger.info(f"Pre-computed {total_precomputed} LAD destination selections for {len(self._lad_destination_cache)} origin LADs")
def _build_industry_probability_cache(self):
"""Pre-compute industry probability matrices for massive performance gain.
Instead of computing sex_probs * capacity_probs + normalization for every worker,
pre-compute final probability arrays for all combinations of (msoa, destination_lad, sex).
This eliminates 380K+ expensive numpy operations per run!
"""
logger.info(f"Building pre-computed industry probability cache for {len(self._capacity_lookup)} MSOAs × {len(self.sex_industry_profiles)} LADs × 2 sexes...")
self._industry_probability_cache = {}
total_combinations = 0
# Pre-compute for all existing MSOAs in our world
for msoa in self._capacity_lookup.keys():
if msoa not in self.msoa_industry_profiles:
continue
capacity_probs = self.msoa_industry_profiles[msoa]['probabilities']
# Pre-compute for all destination LADs that workers might go to
for destination_lad in self.sex_industry_profiles.keys():
for sex in ['Male', 'Female']:
try:
# Get sex-biased industry probabilities
sex_industry_data = self.sex_industry_profiles[destination_lad][sex]
sex_probs = sex_industry_data['probabilities']
# Combine sex bias and capacity weights (the expensive operation!)
combined_weights = sex_probs * capacity_probs
# Normalize to get final probabilities (another expensive operation!)
prob_sum = np.sum(combined_weights)
if prob_sum > 0:
final_probs = combined_weights / prob_sum
else:
# Fallback to uniform distribution if all weights are zero
final_probs = np.ones(len(self.industry_columns)) / len(self.industry_columns)
# Store the pre-computed final probabilities
cache_key = (msoa, destination_lad, sex)
self._industry_probability_cache[cache_key] = final_probs
total_combinations += 1
except (KeyError, IndexError) as e:
# Skip combinations that don't exist in the data
continue
logger.info(f"Pre-computed industry probabilities for {total_combinations} (MSOA, LAD, sex) combinations")
def _update_capacity_lookup(self, msoa_name: str):
"""Optimized capacity lookup update
Args:
msoa_name (str):
"""
if msoa_name in self._capacity_lookup:
entry = self._capacity_lookup[msoa_name]
entry['allocated'] += 1
# Eliminate redundant max() calculation - pre-compute or use simple comparison
entry['available'] = entry['max_capacity'] - entry['allocated'] if entry['allocated'] < entry['max_capacity'] else 1
entry['has_space'] = entry['allocated'] < entry['max_capacity']
def _get_destination_lad_fast(self, origin_lad: str):
"""Ultra-fast LAD destination selection using pre-computed distributions.
This replaces expensive scipy rv.rvs() calls with O(1) array lookups.
For 30M workers, this saves 30M scipy operations!
Args:
origin_lad (str):
Returns:
tuple: (destination_lad, work_type)
"""
if origin_lad not in self._lad_destination_cache:
# Fallback to original method if not in cache
return self._get_destination_lad_original(origin_lad)
cache_data = self._lad_destination_cache[origin_lad]
# Handle empty destinations case
if not cache_data['dest_selections']:
raise ValueError(f"No destinations found for origin LAD: {origin_lad}")
# Get next pre-computed selection (O(1) operation)
current_idx = cache_data['index']
destination_lad = cache_data['dest_selections'][current_idx]
work_type = cache_data['work_type_selections'][current_idx]
# Advance index with wraparound
cache_data['index'] = (current_idx + 1) % len(cache_data['dest_selections'])
return destination_lad, work_type
def _get_destination_lad_original(self, origin_lad: str):
"""Original expensive method kept as fallback
Args:
origin_lad (str):
"""
destinations_data = self.origin_destinations[origin_lad]
if len(destinations_data['destinations']) == 0:
raise ValueError(f"No destinations found for origin LAD: {origin_lad}")
dest_idx = destinations_data['rv'].rvs() # Expensive scipy call!
destination_lad = destinations_data['destinations'][dest_idx]
work_type = destinations_data['work_types'][dest_idx]
return destination_lad, work_type
def _assign_work_location_by_lad(self, person: Person, origin_lad: str):
"""Assign work location based on LAD likelihood data
Args:
person (Person):
origin_lad (str):
"""
self.stats['total_workers'] += 1
# Sample destination LAD and work type using pre-computed selections (massive performance gain)
destination_lad, work_type = self._get_destination_lad_fast(origin_lad)
# Save work type to person (separate from lockdown status)
person.work_mode = work_type
# Track work mode statistics
self.stats['work_mode_assignments'][work_type] = self.stats['work_mode_assignments'].get(work_type, 0) + 1
# Handle special work locations
if destination_lad in self.non_geographical_work_location:
location_type = self.non_geographical_work_location[destination_lad]
if location_type == "home":
self.stats['assigned_home'] += 1
person.work_super_area = None
return
elif location_type == "bind":
# Direct assignment without fallback - use origin LAD as destination
selected_msoa = self._select_best_available_msoa()
self._assign_person_to_msoa(person, selected_msoa, origin_lad)
return
# Handle out-of-scope destinations (offshore, outside UK, Northern Ireland LADs, etc.)
out_of_scope_destinations = {'Offshore Installation', 'Outside UK', 'England', 'Wales', 'Northern Ireland'}
# Use dynamically loaded Northern Ireland LADs
if destination_lad in out_of_scope_destinations or destination_lad in self._northern_ireland_lads:
# Allocate to random MSOA in our world using capacity weights, but use origin LAD for sex bias
selected_msoa = self._select_best_available_msoa()
self._assign_person_to_msoa(person, selected_msoa, origin_lad)
self.stats['assigned_out_of_scope'] += 1
return
# Handle cross-border work assignments
origin_is_scottish = self._is_scottish_lad(origin_lad)
destination_is_scottish = self._is_scottish_lad(destination_lad)
# If Scottish person trying to work in England/Wales - mark as out of scope
if origin_is_scottish and not destination_is_scottish and destination_lad not in self.lad_to_msoas:
selected_msoa = self._select_best_available_msoa()
self._assign_person_to_msoa(person, selected_msoa, origin_lad)
self.stats['assigned_out_of_scope'] += 1
return
# Map destination LAD to a specific MSOA/SuperArea using employment capacity
selected_msoa = self._select_msoa_from_lad(destination_lad)
if selected_msoa is None:
# No MSOAs in destination LAD exist in our world - bounce back to global selection
selected_msoa = self._select_best_available_msoa()
self._assign_person_to_msoa(person, selected_msoa, destination_lad)
# Check if this was a cross-border assignment
if self._is_scottish_lad(destination_lad):
self.stats['assigned_cross_border_ew_to_scotland'] = self.stats.get('assigned_cross_border_ew_to_scotland', 0) + 1
else:
self.stats['assigned_bounced_back_msoa'] += 1
else:
# Successfully assigned to MSOA in destination LAD
self._assign_person_to_msoa(person, selected_msoa, destination_lad)
self.stats['assigned_first_try_msoa'] += 1
def _is_scottish_lad(self, lad_name: str) -> bool:
"""Check if a LAD is Scottish - uses dynamically loaded regional data
Args:
lad_name (str):
"""
# Fast lookup in pre-built cache
if lad_name in self._scottish_lad_cache:
return self._scottish_lad_cache[lad_name]
# If not in cache, check if it's in the dynamically loaded Scottish LADs
is_scottish = lad_name in self._scottish_lads
self._scottish_lad_cache[lad_name] = is_scottish
return is_scottish
def _select_msoa_from_lad(self, destination_lad: str) -> str:
"""Optimized MSOA selection using pre-computed probabilities
Args:
destination_lad (str):
"""
# Check if LAD exists in our mapping
if destination_lad not in self.lad_to_msoas:
# Check if this is a cross-border assignment (EW -> Scottish LAD)
if self._is_scottish_lad(destination_lad):
# English/Welsh person working in Scotland - allow this by bouncing back to available MSOAs
return None # Will trigger bounced_back logic in calling function
print(f"ERROR: Destination LAD '{destination_lad}' not found in lad_to_msoas mapping")
print(f"Available LADs: {list(self.lad_to_msoas.keys())[:10]}")
raise KeyError(f"LAD '{destination_lad}' not found in LAD-to-MSOA mapping")
# Use pre-computed probabilities (massive optimization!)
if destination_lad not in self._lad_msoa_probabilities_cache:
return None # No available MSOAs in this LAD
cache_data = self._lad_msoa_probabilities_cache[destination_lad]
available_msoas = cache_data['msoas']
probabilities = cache_data['probabilities']
if len(available_msoas) == 1:
return available_msoas[0]
# Use numba-accelerated weighted selection
selected_idx = _weighted_choice_fast(probabilities)
return available_msoas[selected_idx]
def _assign_person_to_msoa(self, person: Person, selected_msoa: str, destination_lad: str):
"""Assign person to MSOA and handle industry assignment
Args:
person (Person):
selected_msoa (str):
destination_lad (str):
"""
# Direct assignment - assume MSOA exists
super_area = self.super_areas.members_by_name[selected_msoa]
super_area.add_worker(person)
# Update tracking efficiently
self.allocated_workers_per_msoa[selected_msoa] += 1
# Update pre-computed capacity lookup
self._update_capacity_lookup(selected_msoa)
# Now assign industry based on destination LAD + sex bias + capacity weights
self._assign_industry_with_capacity_and_sex_bias(person, selected_msoa, destination_lad)
self.stats['assigned_by_lad_likelihood'] += 1
def _get_industry_assignment_fast(self, msoa: str, destination_lad: str, sex_key: str):
"""Ultra-fast industry assignment using pre-computed probability matrices.
This replaces expensive numpy operations (sex_probs * capacity_probs + normalization)
with O(1) cache lookups. For 30M workers, this saves 30M+ expensive numpy operations!
Args:
msoa (str):
destination_lad (str):
sex_key (str):
Returns:
str: Industry name
"""
cache_key = (msoa, destination_lad, sex_key)
if cache_key in self._industry_probability_cache:
# Use pre-computed probabilities (massive performance gain)
final_probs = self._industry_probability_cache[cache_key]
else:
# Fallback to original expensive method if not in cache
return self._get_industry_assignment_original(msoa, destination_lad, sex_key)
# Fast industry selection using pre-computed probabilities
industry_idx = np.random.choice(len(self.industry_columns), p=final_probs)
return self.industry_columns[industry_idx]
def _get_industry_assignment_original(self, msoa: str, destination_lad: str, sex_key: str):
"""Original expensive method kept as fallback
Args:
msoa (str):
destination_lad (str):
sex_key (str):
"""
# Get sex-biased industry probabilities from destination work LAD
sex_industry_data = self.sex_industry_profiles[destination_lad][sex_key]
sex_probs = sex_industry_data['probabilities']
# Get MSOA capacity-based industry probabilities
msoa_industry_data = self.msoa_industry_profiles[msoa]
capacity_probs = msoa_industry_data['probabilities']
# Combine sex bias and capacity weights (expensive operations!)
combined_weights = sex_probs * capacity_probs
final_probs = combined_weights / np.sum(combined_weights)
if len(final_probs) == 0 or np.sum(final_probs) == 0:
raise ValueError(f"Empty probabilities for industry assignment: MSOA={msoa}, LAD={destination_lad}, sex={sex_key}")
industry_idx = np.random.choice(len(self.industry_columns), p=final_probs)
return self.industry_columns[industry_idx]
def _assign_industry_with_capacity_and_sex_bias(self, person: Person, msoa: str, destination_lad: str):
"""Industry assignment using pre-computed probability matrices for massive performance gain
Args:
person (Person):
msoa (str):
destination_lad (str):
"""
sex_key = 'Female' if person.sex == 'f' else 'Male'
industry_name = self._get_industry_assignment_fast(msoa, destination_lad, sex_key)
# Store the sector code
person.sector = self._map_industry_to_sector(industry_name)
# Assign sub-sector if applicable
if person.sector in self.sub_sector_ratio:
self._assign_sub_sector(person)
# Track allocation by MSOA, sector, and sex efficiently
self._track_msoa_sector_allocation_fast(msoa, person.sector, person.sex)
# Update stats
self.stats['assigned_with_industry_data'] += 1
self.stats['industry_assignments'][industry_name] = self.stats['industry_assignments'].get(industry_name, 0) + 1
def _map_industry_to_sector(self, industry_name: str) -> str:
"""Map full industry name to simplified sector code
Args:
industry_name (str):
"""
# Create a mapping from industry names to sector codes
industry_to_sector = {
'Agriculture; Forestry; Fishing': 'A',
'Mining and Quarrying': 'B',
'Manufacturing': 'C',
'Electricity, Gas, Steam and Air Conditioning Supply': 'D',
'Water Supply; Sewage; Waste Management and Remediation activities': 'E',
'Construction': 'F',
'Wholesale and Retail trade; Repair of Motor Vehicles and Motorcycles': 'G',
'Transport and Storage': 'H',
'Accommodation and Food Service Activities': 'I',
'Information and Communication': 'J',
'Financial and Insurance Activities': 'K',
'Real Estate Activities': 'L',
'Professional Scientific and Technical Activities': 'M',
'Administrative and Support Service Activities': 'N',
'Public Administration and Defence; Compulsory Social Security': 'O',
'Education': 'P',
'Human Health and Social Work Activities': 'Q',
'Other': 'R' # Aggregated category for all R, S, T, U sectors
}
return industry_to_sector.get(industry_name, 'Z') # 'Z' for unknown
def _track_msoa_sector_allocation_fast(self, msoa: str, sector: str, person_sex: str):
"""Optimized tracking of worker allocation by MSOA, sector, and sex
Args:
msoa (str):
sector (str):
person_sex (str):
"""
# Direct tracking - assume MSOA is valid
msoa_data = self.stats['msoa_sector_allocations'].setdefault(msoa, {})
msoa_data[sector] = msoa_data.get(sector, 0) + 1
# Track by sex as well
msoa_sex_data = self.stats['msoa_sector_sex_allocations'].setdefault(msoa, {})
sector_sex_data = msoa_sex_data.setdefault(sector, {'Female': 0, 'Male': 0})
sex_key = 'Female' if person_sex == 'f' else 'Male'
sector_sex_data[sex_key] += 1
def _track_msoa_sector_allocation(self, msoa: str, sector: str):
"""Legacy method - kept for backward compatibility
Args:
msoa (str):
sector (str):
"""
self._track_msoa_sector_allocation_fast(msoa, sector)
def _select_best_available_msoa(self) -> str:
"""Select best available MSOA using pre-computed distribution for massive performance gain
"""
return self._select_best_available_msoa_fast()
def _select_best_available_msoa_fast(self) -> str:
"""Ultra-fast MSOA selection using pre-computed distribution.
This replaces O(MSOAs) computation per worker with O(1) array lookup.
For 30M workers × 7K MSOAs, this saves ~210 billion operations!
"""
if not hasattr(self, '_global_msoa_selections') or len(self._global_msoa_selections) == 0:
# Fallback to original method if pre-computation failed
return self._select_best_available_msoa_original()
# Get next pre-computed selection (O(1) operation)
selected_msoa = self._global_msoa_selections[self._global_msoa_idx]
# Advance index with wraparound
self._global_msoa_idx = (self._global_msoa_idx + 1) % len(self._global_msoa_selections)
return selected_msoa
def _select_best_available_msoa_original(self) -> str:
"""Original expensive method kept as fallback
"""
# Use all MSOAs with capacity-based weights
available_msoas = []
capacity_weights = []
for msoa_name, capacity_info in self._capacity_lookup.items():
available_msoas.append(msoa_name)
# Use original capacity as weight (bigger capacity = higher probability, even when overcrowded)
capacity_weights.append(capacity_info['capacity'])
if len(available_msoas) == 0:
print(f"ERROR: No available MSOAs in _select_best_available_msoa")
print(f"_capacity_lookup size: {len(self._capacity_lookup)}")
print(f"_world_msoas_cache size: {len(self._world_msoas_cache) if self._world_msoas_cache else 'None'}")
raise ValueError("No available MSOAs for global selection")
# Select MSOA weighted by employment capacity
if len(available_msoas) == 1:
return available_msoas[0]
# Weighted selection
total_weight = sum(capacity_weights)
probabilities = [w/total_weight for w in capacity_weights]
return np.random.choice(available_msoas, p=probabilities)
def _print_allocation_summary(self):
"""Print simplified allocation summary"""
total = self.stats['total_workers']
if total == 0:
print("\n===== Worker Allocation Summary =====")
print("No workers were processed.")
return
print("\n===== Worker Allocation Summary =====")
print(f"Total workers processed: {total:,}")
print()
# Calculate actual workplace assignments (exclude work from home)
workplace_assignments = total - self.stats['assigned_home']
# Work from home
home = self.stats['assigned_home']
if home > 0:
print(f"🏠 Assigned to work from home: {home:,} ({100*home/total:.1f}%)")
# Workplace allocation breakdown
if workplace_assignments > 0:
print(f"🏢 Assigned to workplace: {workplace_assignments:,} ({100*workplace_assignments/total:.1f}%)")
# First try assignments (to destination LAD MSOAs)
first_try = self.stats['assigned_first_try_msoa']
if first_try > 0:
print(f" ✓ Assigned to destination LAD MSOA: {first_try:,} ({100*first_try/workplace_assignments:.1f}%)")
# Bounced back assignments (destination LAD MSOAs don't exist)
bounced_back = self.stats['assigned_bounced_back_msoa']
if bounced_back > 0:
print(f" ↩️ Bounced back (destination MSOA not in world): {bounced_back:,} ({100*bounced_back/workplace_assignments:.1f}%)")
# Out-of-scope assignments
out_of_scope = self.stats['assigned_out_of_scope']
if out_of_scope > 0:
print(f" 🌐 From out-of-scope destinations: {out_of_scope:,} ({100*out_of_scope/workplace_assignments:.1f}%)")
# Industry allocation summary
print()
print("=== Industry Allocation ===")
industry_with_data = self.stats['assigned_with_industry_data']
print(f"Workers assigned using MSOA industry data: {industry_with_data:,}")
# Show top 5 assigned industries
if self.stats['industry_assignments']:
sorted_industries = sorted(self.stats['industry_assignments'].items(), key=lambda x: x[1], reverse=True)
print(f"\nTop 5 assigned industries:")
for industry, count in sorted_industries[:5]:
percentage = 100 * count / total if total > 0 else 0
# Shorten industry names for display
short_name = industry.split(';')[0] if ';' in industry else industry
if len(short_name) > 40:
short_name = short_name[:37] + "..."
print(f" {short_name}: {count:,} ({percentage:.1f}%)")
# Sub-sector assignments
if self.stats['sub_sector_assignments']:
total_sub_sectors = sum(self.stats['sub_sector_assignments'].values())
print(f"\nSub-sector assignments: {total_sub_sectors:,} workers assigned specialized sub-sectors")
# Show top 5 sub-sectors
sorted_sub_sectors = sorted(self.stats['sub_sector_assignments'].items(), key=lambda x: x[1], reverse=True)
print("Top 5 sub-sectors:")
for sub_sector, count in sorted_sub_sectors[:5]:
percentage = 100 * count / total_sub_sectors if total_sub_sectors > 0 else 0
print(f" {sub_sector}: {count:,} ({percentage:.1f}%)")
# Show sample assignments
if self.stats['sub_sector_samples']:
print(f"\nSample sub-sector assignments:")
print(f"{'ID':>8} {'Sex':>3} {'Sector':>6} {'Sub-sector':>25} {'Home Area':>15} {'Work Area':>15}")
print(f"{'-'*8} {'-'*3} {'-'*6} {'-'*25} {'-'*15} {'-'*15}")
for sample in self.stats['sub_sector_samples'][:10]: # Show first 10
print(f"{sample['person_id']:>8} {sample['sex']:>3} {sample['sector']:>6} {sample['sub_sector']:>25} {sample['area']:>15} {sample['work_area']:>15}")
# MSOA capacity usage
if hasattr(self, 'allocated_workers_per_msoa'):
over_capacity = sum(1 for msoa, allocated in self.allocated_workers_per_msoa.items()
if allocated > self.msoa_employment_capacity.get(msoa, 0))
if over_capacity > 0:
print(f"\nMSOAs operating over recorded capacity: {over_capacity:,}")
print("=" * 40)
# Print MSOA sector comparison
self._print_msoa_sector_comparison()
def _print_msoa_sector_comparison(self):
"""Print detailed comparison of allocated vs source data by MSOA and sector"""
print("\n=== MSOA Sector Allocation vs Source Data ===")
# Create reverse mapping from sector codes to industry names
sector_to_industry = {}
for industry, sector in zip(self.industry_columns, ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U']):
sector_to_industry[sector] = industry
# Use cached world MSOAs for performance
world_msoas = self._world_msoas_cache
# Filter to only MSOAs that exist in the world and have capacity data
valid_msoas = [(msoa, capacity) for msoa, capacity in self.msoa_employment_capacity.items()
if msoa in world_msoas]
valid_msoas.sort(key=lambda x: x[1], reverse=True)
if not valid_msoas:
print("No valid MSOAs found that exist in both census data and world SuperAreas")
return
# Show data coverage statistics
total_census_msoas = len(self.msoa_employment_capacity)
total_world_msoas = len(world_msoas)
matched_msoas = len(valid_msoas)
print(f"Data Coverage: {matched_msoas:,} MSOAs matched between census ({total_census_msoas:,}) and world ({total_world_msoas:,})")
# Show top 5 MSOAs by total capacity that exist in the world
top_msoas = valid_msoas
for msoa, total_capacity in top_msoas:
print(f"\n--- {msoa} (Capacity: {total_capacity:,}) ---")
# Get source data for this MSOA
msoa_source = self.msoa_aggregations[self.msoa_aggregations['msoa'] == msoa]
if msoa_source.empty:
print(" No source data available")
continue
source_row = msoa_source.iloc[0]
allocated_data = self.stats['msoa_sector_allocations'].get(msoa, {})
total_allocated = self.allocated_workers_per_msoa.get(msoa, 0)
print(f" Total: Source={total_capacity:,}, Allocated={total_allocated:,}, Diff={total_allocated-total_capacity:+,}")
# Show top sectors for this MSOA
source_sectors = []
for industry in self.industry_columns:
if industry in source_row:
count = source_row[industry]
if count > 0:
sector = self._map_industry_to_sector(industry)
source_sectors.append((sector, industry, count))
# Sort by source count and show top 5
source_sectors.sort(key=lambda x: x[2], reverse=True)
print(f" {'Sector':>6} {'Industry':>25} {'Source':>8} {'Allocated':>10} {'F/M':>8} {'Diff':>8} {'%Diff':>8}")
print(f" {'-'*6} {'-'*25} {'-'*8} {'-'*10} {'-'*8} {'-'*8} {'-'*8}")
for sector, industry, source_count in source_sectors:
allocated_count = allocated_data.get(sector, 0)
diff = allocated_count - source_count
percent_diff = (diff / source_count * 100) if source_count > 0 else 0
# Get gender breakdown for this sector
sex_data = self.stats['msoa_sector_sex_allocations'].get(msoa, {}).get(sector, {'Female': 0, 'Male': 0})
female_count = sex_data['Female']
male_count = sex_data['Male']
gender_ratio = f"{female_count}/{male_count}" if allocated_count > 0 else "0/0"
# Shorten industry name for display
short_industry = industry.split(';')[0][:25]
print(f" {sector:>6} {short_industry:>25} {source_count:>8} {allocated_count:>10} {gender_ratio:>8} {diff:>+8} {percent_diff:>+7.1f}%")
# Summary statistics across all MSOAs that exist in the world
print(f"\n--- Summary Across World MSOAs ({len(valid_msoas)} MSOAs) ---")
# Calculate totals only for MSOAs that exist in the world
total_source = sum(capacity for _, capacity in valid_msoas)
total_allocated = sum(self.allocated_workers_per_msoa.get(msoa, 0) for msoa, _ in valid_msoas)
overall_diff = total_allocated - total_source
overall_percent = (overall_diff / total_source * 100) if total_source > 0 else 0
print(f"Total Employment: Source={total_source:,}, Allocated={total_allocated:,}")
print(f"Overall Difference: {overall_diff:+,} ({overall_percent:+.1f}%)")
# Show which MSOAs have largest over/under allocation (only for world MSOAs)
differences = []
for msoa, source_cap in valid_msoas:
allocated = self.allocated_workers_per_msoa.get(msoa, 0)
diff = allocated - source_cap
if source_cap > 0: # Only consider MSOAs with actual capacity
percent_diff = diff / source_cap * 100
differences.append((msoa, diff, percent_diff, source_cap))
# Most over-allocated
differences.sort(key=lambda x: x[2], reverse=True)
print(f"\nMost Over-allocated MSOAs:")
for msoa, diff, percent_diff, capacity in differences[:3]:
print(f" {msoa}: {diff:+,} ({percent_diff:+.1f}%) from {capacity:,}")
# Most under-allocated
differences.sort(key=lambda x: x[2])
print(f"\nMost Under-allocated MSOAs:")
for msoa, diff, percent_diff, capacity in differences[:3]:
print(f" {msoa}: {diff:+,} ({percent_diff:+.1f}%) from {capacity:,}")
print("=" * 60)
def _assign_sub_sector(self, person):
"""Assign sub-sector job as defined in config
Args:
person:
"""
MC_random = np.random.uniform()
ratio = self.sub_sector_ratio[person.sector][person.sex]
distr = self.sub_sector_distr[person.sector][person.sex]
if MC_random < ratio:
sub_sector_idx = rv_discrete(values=(np.arange(len(distr)), distr)).rvs()
person.sub_sector = self.sub_sector_distr[person.sector]["label"][
sub_sector_idx
]
# Track sub-sector assignment
sub_sector_key = f"{person.sector}:{person.sub_sector}"
self.stats['sub_sector_assignments'][sub_sector_key] = self.stats['sub_sector_assignments'].get(sub_sector_key, 0) + 1
# Keep sample of sub-sector assignments (first 20 for display)
if len(self.stats['sub_sector_samples']) < 20:
self.stats['sub_sector_samples'].append({
'person_id': person.id,
'sector': person.sector,
'sub_sector': person.sub_sector,
'sex': person.sex,
'area': person.area.name,
'work_area': person.work_super_area.name if person.work_super_area else "No Assignment"
})
def _lockdown_status_lottery(self, n_workers):
"""Create lockdown status lottery for workers
Args:
n_workers:
"""
self.lockdown_status_random = np.random.choice(2, n_workers, p=[4 / 5, 1 / 5])
def _parse_closure_probabilities_by_sector(
self, company_closure: dict, lockdown_tags: List
):
"""Parse closure probabilities from config
Args:
company_closure (dict):
lockdown_tags (List):
"""
ret = {}
for sector in company_closure:
ret[sector] = np.array(
[
self.company_closure[sector][lockdown_tags[0]],
self.company_closure[sector][lockdown_tags[1]],
self.company_closure[sector][lockdown_tags[2]],
]
)
return ret
def _assign_lockdown_status(
self,
probabilities_by_sector: dict,
lockdown_tags: List[str],
lockdown_tags_idx: List[int],
person: Person,
):
"""Assign lockdown_status based on work mode and sector probabilities.
Work mode influences lockdown status:
- From_Home: Always furlough (already remote)
- Hybrid: Never key_worker (essential services need full physical presence)
- Normal: Use full sector probability distribution
Args:
probabilities_by_sector (dict):
lockdown_tags (List[str]):
lockdown_tags_idx (List[int]):
person (Person):
"""
work_mode = getattr(person, 'work_mode', 'Normal')
if work_mode == 'From_Home':
# Remote workers effectively can't go to workplace during lockdowns
person.lockdown_status = "furlough"
elif work_mode == 'Hybrid':
# Hybrid workers are never key workers (can't do essential services remotely)
# Choose between furlough and random based on sector, excluding key_worker
sector_probs = probabilities_by_sector[person.sector]
# Get furlough and random probabilities, normalize them
furlough_prob = sector_probs[2] # furlough is index 2
random_prob = sector_probs[1] # random is index 1
total_non_key = furlough_prob + random_prob
if total_non_key > 0:
# Randomly assign between furlough and random, proportionally
if np.random.random() < furlough_prob / total_non_key:
person.lockdown_status = "furlough"
else:
person.lockdown_status = "random"
else:
# Fallback: if sector has no furlough/random (100% key workers), make them random
person.lockdown_status = "random"
else: # work_mode == 'Normal' or unknown
# Normal workers use full sector probability distribution
idx = random_choice_numba(
lockdown_tags_idx, probabilities_by_sector[person.sector]
)
# Currently all people definitely not furloughed or key are assigned a 'random' tag which allows for
# them to dynamically be sent to work. For now we fix this so that the same 1/5 people go to work once a week
# rather than a 1/5 chance that a person with a 'random' tag goes to work.
# If commented out then people will be correctly assigned random tag for going to work randomly
# if value == "random" and self.lockdown_status_random[idx] == 0:
# value = "furlough"
person.lockdown_status = lockdown_tags[idx]
@classmethod
def for_super_areas(
cls,
area_names: List[str],
config_file: str = default_config_file,
policy_config_file: str = default_policy_config_file,
) -> "WorkerDistributorNew":
"""Create WorkerDistributorNew for specific super areas
Args:
area_names (List[str]):
config_file (str, optional): (Default value = default_config_file)
policy_config_file (str, optional): (Default value = default_policy_config_file)
"""
return cls.from_file(
area_names,
config_file,
policy_config_file,
)
@classmethod
def from_file(
cls,
area_names: List[str] = None,
config_file: str = default_config_file,
policy_config_file: str = default_policy_config_file,
) -> "WorkerDistributorNew":
"""Create WorkerDistributorNew from data files, automatically detecting which regional
data to load based on area codes (E=England, W=Wales, S=Scotland)
Args:
area_names (List[str], optional): List of SuperArea names for which to initiate WorkerDistributorNew (Default value = None)
config_file (str, optional): Configuration file with worker distributor settings (Default value = default_config_file)
policy_config_file (str, optional): Policy configuration file with company closure settings (Default value = default_policy_config_file)
"""
area_names = area_names or []
# Initialize empty dataframes
likelihood_df = pd.DataFrame()
workers_df = pd.DataFrame()
sex_industry_df = pd.DataFrame()
geography_df = pd.DataFrame()
# Determine which regions we need
# IMPORTANT: For cross-border work assignments, we need to load ALL geography data
# even if our world only contains areas from one region, because likelihood data
# may reference LADs from other regions as work destinations
if area_names:
# Use provided area names to determine regions that have areas in our world
area_codes = set(area_names)
has_scotland_areas = any(area.startswith('S') for area in area_codes)
has_england_wales_areas = any(area.startswith(('E', 'W')) for area in area_codes)
has_northern_ireland_areas = any(area.startswith('N') for area in area_codes)
# Always load all regional data to support cross-border assignments
# People in one region may work in LADs from other regions
need_scotland = True
need_england_wales = True
need_northern_ireland = True
logger.info(f"World contains: Scotland areas={has_scotland_areas}, England/Wales areas={has_england_wales_areas}, Northern Ireland areas={has_northern_ireland_areas}")
logger.info("Loading all regional data to support cross-border work assignments")
else:
# If no area names provided, load all regions
need_scotland = True
need_england_wales = True
need_northern_ireland = True
logger.info(f"Data loading strategy: Scotland={need_scotland}, England/Wales={need_england_wales}, Northern Ireland={need_northern_ireland}")
# Load Scottish data if needed
if need_scotland:
logger.info("Loading Scottish work data files...")
likelihood_df = pd.concat([likelihood_df, pd.read_csv(default_likelihood_file)], ignore_index=True)
workers_df = pd.concat([workers_df, pd.read_csv(default_workers_file)], ignore_index=True)
sex_industry_df = pd.concat([sex_industry_df, pd.read_csv(default_sex_industry_file)], ignore_index=True)
geography_df = pd.concat([geography_df, pd.read_csv(default_geography_file)], ignore_index=True)
# Load England/Wales data if needed
if need_england_wales:
logger.info("Loading England/Wales work data files...")
ew_likelihood_df = pd.read_csv(default_ew_likelihood_file)
likelihood_df = pd.concat([likelihood_df, ew_likelihood_df], ignore_index=True)
workers_df = pd.concat([workers_df, pd.read_csv(default_ew_workers_file)], ignore_index=True)
sex_industry_df = pd.concat([sex_industry_df, pd.read_csv(default_ew_sex_industry_file)], ignore_index=True)
geography_df = pd.concat([geography_df, pd.read_csv(default_ew_geography_file, low_memory=False)], ignore_index=True)
# Load Northern Ireland data if needed
if need_northern_ireland:
logger.info("Loading Northern Ireland work data files...")
try:
ni_likelihood_df = pd.read_csv(default_ni_likelihood_file)
likelihood_df = pd.concat([likelihood_df, ni_likelihood_df], ignore_index=True)
workers_df = pd.concat([workers_df, pd.read_csv(default_ni_workers_file)], ignore_index=True)
sex_industry_df = pd.concat([sex_industry_df, pd.read_csv(default_ni_sex_industry_file)], ignore_index=True)
geography_df = pd.concat([geography_df, pd.read_csv(default_ni_geography_file)], ignore_index=True)
logger.info("Successfully loaded Northern Ireland work data files")
except FileNotFoundError as e:
logger.warning(f"Northern Ireland work data file not found: {e}")
logger.info("Continuing without Northern Ireland work data - NI workers will be handled as out-of-scope")
# Load config files
with open(config_file, 'r') as f:
config = yaml.safe_load(f)
with open(policy_config_file, 'r') as f:
policy_config = yaml.safe_load(f)
return cls(
likelihood_df=likelihood_df,
geography_df=geography_df,
workers_df=workers_df,
sex_industry_df=sex_industry_df,
company_closure=policy_config["company_closure"]["sectors"],
age_range=config['age_range'],
sub_sector_ratio=config['sub_sector_ratio'],
sub_sector_distr=config['sub_sector_distr'],
non_geographical_work_location=config['non_geographical_work_location']
)
|