Skip to content

Immunity setter

ImmunitySetter

Source code in june/epidemiology/infection/immunity_setter.py
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
class ImmunitySetter:
    """ """
    def __init__(
        self,
        susceptibility_dict: dict = default_susceptibility_dict,
        multiplier_dict: dict = default_multiplier_dict,
        vaccination_dict: dict = None,
        previous_infections_dict=None,
        multiplier_by_comorbidity: Optional[dict] = None,
        comorbidity_prevalence_reference_population: Optional[dict] = None,
        susceptibility_mode="average",
        previous_infections_distribution="uniform",
        record: "Record" = None,
    ):
        """
        Sets immnuity parameters to different viruses.

        Parameters
        ----------
        susceptibility_dict:
           A dictionary mapping infection_id -> susceptibility by age.
           Example:
            susceptibility_dict = {"123" : {"0-50" : 0.5, "50-100" : 0.2}}
        multiplier_dict:
           A dictionary mapping infection_id -> symptoms reduction by age.
           Example:
            multiplier_dict = {"123" : {"0-50" : 0.5, "50-100" : 0.2}}
        vaccination_dict:
            A dictionary specifying the starting vaccination status of the population.
            Example:
                vaccination_dict = {
                    "Pfizer": {
                        "percentage_vaccinated": {"0-50": 0.7, "50-100": 1.0},
                        "infections": {
                            Covid19.infection_id(): {
                                "sterilisation_efficacy": {"0-100": 0.5},
                                "symptomatic_efficacy": {"0-100": 0.5},
                            },
                        },
                    },
                    "sputnik": {
                        "percentage_vaccinated": {"0-30": 0.3, "30-100": 0.0},
                        "infections": {
                            B117.infection_id(): {
                                "sterilisation_efficacy": {"0-100": 0.8},
                                "symptomatic_efficacy": {"0-100": 0.8},
                            },
                        },
                    },
                }
            previous_infections_dict:
                A dictionary specifying the current seroprevalence per region and age.
                Example:
                    previous_infections_dict = {
                        "infections": {
                            Covid19.infection_id(): {
                                "sterilisation_efficacy": 0.5,
                                "symptomatic_efficacy": 0.6,
                            },
                            B117.infection_id(): {
                                "sterilisation_efficacy": 0.2,
                                "symptomatic_efficacy": 0.3,
                            },
                        },
                        "ratios": {
                            "London": {"0-50": 0.5, "50-100": 0.2},
                            "North East": {"0-70": 0.3, "70-100": 0.8},
                        },
                    }
        """
        self.susceptibility_dict = self._read_susceptibility_dict(susceptibility_dict)
        if multiplier_dict is None:
            self.multiplier_dict = {}
        else:
            self.multiplier_dict = multiplier_dict
        self.vaccination_dict = self._read_vaccination_dict(vaccination_dict)
        self.previous_infections_dict = self._read_previous_infections_dict(
            previous_infections_dict
        )
        self.multiplier_by_comorbidity = multiplier_by_comorbidity
        if comorbidity_prevalence_reference_population is not None:
            self.comorbidity_prevalence_reference_population = (
                parse_prevalence_comorbidities_in_reference_population(
                    comorbidity_prevalence_reference_population
                )
            )
        else:
            self.comorbidity_prevalence_reference_population = None
        self.susceptibility_mode = susceptibility_mode
        self.previous_infections_distribution = previous_infections_distribution
        self.record = record

    @classmethod
    def from_file_with_comorbidities(
        cls,
        susceptibility_dict: dict = default_susceptibility_dict,
        multiplier_dict: dict = default_multiplier_dict,
        vaccination_dict: dict = None,
        previous_infections_dict: dict = None,
        comorbidity_multipliers_path: Optional[str] = None,
        male_comorbidity_reference_prevalence_path: Optional[str] = None,
        female_comorbidity_reference_prevalence_path: Optional[str] = None,
        susceptibility_mode="average",
        record: "Record" = None,
    ) -> "ImmunitySetter":
        """

        Args:
            susceptibility_dict (dict, optional): (Default value = default_susceptibility_dict)
            multiplier_dict (dict, optional): (Default value = default_multiplier_dict)
            vaccination_dict (dict, optional): (Default value = None)
            previous_infections_dict (dict, optional): (Default value = None)
            comorbidity_multipliers_path (Optional[str], optional): (Default value = None)
            male_comorbidity_reference_prevalence_path (Optional[str], optional): (Default value = None)
            female_comorbidity_reference_prevalence_path (Optional[str], optional): (Default value = None)
            susceptibility_mode: (Default value = "average")
            record ("Record", optional): (Default value = None)

        """
        if comorbidity_multipliers_path is not None:
            with open(comorbidity_multipliers_path) as f:
                comorbidity_multipliers = yaml.load(f, Loader=yaml.FullLoader)
            female_prevalence = read_comorbidity_csv(
                female_comorbidity_reference_prevalence_path
            )
            male_prevalence = read_comorbidity_csv(
                male_comorbidity_reference_prevalence_path
            )
            comorbidity_prevalence_reference_population = (
                convert_comorbidities_prevalence_to_dict(
                    female_prevalence, male_prevalence
                )
            )
        else:
            comorbidity_multipliers = None
            comorbidity_prevalence_reference_population = None
        return ImmunitySetter(
            susceptibility_dict=susceptibility_dict,
            multiplier_dict=multiplier_dict,
            vaccination_dict=vaccination_dict,
            previous_infections_dict=previous_infections_dict,
            multiplier_by_comorbidity=comorbidity_multipliers,
            comorbidity_prevalence_reference_population=comorbidity_prevalence_reference_population,
            susceptibility_mode=susceptibility_mode,
            record=record,
        )

    def set_immunity(self, world):
        """

        Args:
            world: 

        """
        if self.multiplier_dict:
            self.set_multipliers(world.people)
        if self.susceptibility_dict:
            self.set_susceptibilities(world.people)
        if self.previous_infections_dict:
            self.set_previous_infections(world)
        if self.vaccination_dict:
            self.set_vaccinations(world.people)

    def get_multiplier_from_reference_prevalence(self, age, sex):
        """Compute mean comorbidity multiplier given the prevalence of the different comorbidities
        in the reference population (for example the UK). It will be used to remove effect of
        comorbidities in the reference population

        Args:
            age: age group to compute average multiplier
            sex: 

        """
        weighted_multiplier = 0.0
        for comorbidity in self.comorbidity_prevalence_reference_population.keys():
            weighted_multiplier += (
                self.multiplier_by_comorbidity[comorbidity]
                * self.comorbidity_prevalence_reference_population[comorbidity][sex][
                    age
                ]
            )
        return weighted_multiplier

    def get_weighted_multipliers_by_age_sex(
        self,
    ):
        """ """
        reference_multipliers = {"m": [], "f": []}
        for sex in ("m", "f"):
            for age in range(100):
                reference_multipliers[sex].append(
                    self.get_multiplier_from_reference_prevalence(age=age, sex=sex)
                )
        return reference_multipliers

    def set_multipliers(self, population):
        """

        Args:
            population: 

        """
        if (
            self.multiplier_by_comorbidity is not None
            and self.comorbidity_prevalence_reference_population is not None
        ):
            set_comorbidity_multipliers = True
            reference_weighted_multipliers = self.get_weighted_multipliers_by_age_sex()
        else:
            set_comorbidity_multipliers = False
        for person in population:
            for inf_id in self.multiplier_dict:
                person.immunity.effective_multiplier_dict[
                    inf_id
                ] = self.multiplier_dict[inf_id]
                if set_comorbidity_multipliers:
                    multiplier = self.multiplier_by_comorbidity.get(
                        person.comorbidity, 1.0
                    )
                    reference_multiplier = reference_weighted_multipliers[person.sex][
                        person.age
                    ]
                    person.immunity.effective_multiplier_dict[inf_id] += (
                        multiplier / reference_multiplier
                    ) - 1.0

    def _read_susceptibility_dict(self, susceptibility_dict):
        """

        Args:
            susceptibility_dict: 

        """
        if susceptibility_dict is None:
            return {}
        ret = {}
        for inf_id in susceptibility_dict:
            ret[inf_id] = parse_age_probabilities(
                susceptibility_dict[inf_id], fill_value=1.0
            )
        return ret

    def _read_vaccination_dict(self, vaccination_dict):
        """

        Args:
            vaccination_dict: 

        """
        if vaccination_dict is None:
            return {}
        ret = {}
        for vaccine, vdata in vaccination_dict.items():
            ret[vaccine] = {}
            ret[vaccine]["percentage_vaccinated"] = parse_age_probabilities(
                vdata["percentage_vaccinated"]
            )
            ret[vaccine]["infections"] = {}
            for inf_id in vdata["infections"]:
                ret[vaccine]["infections"][inf_id] = {}
                for key in vdata["infections"][inf_id]:
                    ret[vaccine]["infections"][inf_id][key] = parse_age_probabilities(
                        vdata["infections"][inf_id][key], fill_value=0.0
                    )
        return ret

    def _read_previous_infections_dict(self, previous_infections_dict):
        """

        Args:
            previous_infections_dict: 

        """
        if previous_infections_dict is None:
            return {}
        ret = {}
        ret["infections"] = previous_infections_dict["infections"]
        ret["ratios"] = {}
        for region, region_ratios in previous_infections_dict["ratios"].items():
            ret["ratios"][region] = parse_age_probabilities(region_ratios)
        return ret

    def set_susceptibilities(self, population):
        """

        Args:
            population: 

        """
        if self.susceptibility_mode == "average":
            self._set_susceptibilities_avg(population)
        elif self.susceptibility_mode == "individual":
            self._set_susceptibilities_individual(population)
        else:
            raise NotImplementedError()

    def _set_susceptibilities_avg(self, population):
        """

        Args:
            population: 

        """
        for person in population:
            for inf_id in self.susceptibility_dict:
                if person.age >= len(self.susceptibility_dict[inf_id]):
                    continue
                person.immunity.susceptibility_dict[inf_id] = self.susceptibility_dict[
                    inf_id
                ][person.age]

    def _set_susceptibilities_individual(self, population):
        """

        Args:
            population: 

        """
        for person in population:
            for inf_id in self.susceptibility_dict:
                if person.age >= len(self.susceptibility_dict[inf_id]):
                    continue
                fraction = self.susceptibility_dict[inf_id][person.age]
                if random() > fraction:
                    person.immunity.susceptibility_dict[inf_id] = 0.0

    def set_vaccinations(self, population):
        """Sets previous vaccination on the starting population.

        Args:
            population: 

        """
        vaccine_type = []
        susccesfully_vaccinated = np.zeros(len(population), dtype=int)
        if not self.vaccination_dict:
            return
        vaccines = list(self.vaccination_dict.keys())
        for i, person in enumerate(population):
            if person.age > 99:
                age = 99
            else:
                age = person.age
            vaccination_rates = np.array(
                [
                    self.vaccination_dict[vaccine]["percentage_vaccinated"][age]
                    for vaccine in vaccines
                ]
            )
            total_vacc_rate = np.sum(vaccination_rates)
            if random() < total_vacc_rate:
                vaccination_rates /= total_vacc_rate
                vaccine = np.random.choice(vaccines, p=vaccination_rates)
                vdata = self.vaccination_dict[vaccine]
                for inf_id, inf_data in vdata["infections"].items():
                    person.immunity.add_multiplier(
                        inf_id, 1.0 - inf_data["symptomatic_efficacy"][age]
                    )
                    person.immunity.susceptibility_dict[inf_id] = (
                        1.0 - inf_data["sterilisation_efficacy"][age]
                    )
                    susccesfully_vaccinated[i] = 1
                person.vaccinated = True
                vaccine_type.append(vaccine)
            else:
                vaccine_type.append("none")
        if self.record is not None:
            self.record.statics["people"].extra_str_data["vaccine_type"] = vaccine_type
            self.record.statics["people"].extra_int_data[
                "susccesfully_vaccinated"
            ] = susccesfully_vaccinated 

    def set_previous_infections(self, world):
        """

        Args:
            world: 

        """
        if self.previous_infections_distribution == "uniform":
            self.set_previous_infections_uniform(world.people)
        elif self.previous_infections_distribution == "clustered":
            self.set_previous_infections_clustered(world)
        else:
            raise ValueError(
                f"Previous infection distr. {self.previous_infections_distribution} not recognised"
            )

    def set_previous_infections_uniform(self, population):
        """Sets previous infections on the starting population in a uniform way.

        Args:
            population: 

        """
        for i, person in enumerate(population):
            if person.region.name not in self.previous_infections_dict["ratios"]:
                continue
            ratio = self.previous_infections_dict["ratios"][person.region.name][
                person.age
            ]
            if random() < ratio:
                for inf_id, inf_data in self.previous_infections_dict[
                    "infections"
                ].items():
                    person.immunity.add_multiplier(
                        inf_id, 1.0 - inf_data["symptomatic_efficacy"]
                    )
                    person.immunity.susceptibility_dict[inf_id] = (
                        1.0 - inf_data["sterilisation_efficacy"]
                    )

    def _get_people_to_infect_by_age(self, people, seroprev_by_age):
        """Returns total people to infect according to the serorev age profile

        Args:
            people: 
            seroprev_by_age: 

        """
        people_by_age = Counter([person.age for person in people])
        people_to_infect = {
            age: people_by_age[age] * seroprev_by_age[age] for age in people_by_age
        }
        return people_to_infect

    def _get_household_score(self, household, age_distribution):
        """

        Args:
            household: 
            age_distribution: 

        """
        if len(household.residents) == 0:
            return 0
        ret = 0
        for resident in household.residents:
            ret += age_distribution[resident.age]
        return ret / np.sqrt(len(household.residents))

    def set_previous_infections_clustered(self, world):
        """Sets previous infections on the starting population by clustering households.

        Args:
            world: 

        """
        infection_ids = list(self.previous_infections_dict["infections"].keys())
        infection_data = list(self.previous_infections_dict["infections"].values())
        for region in world.regions:
            seroprev_by_age = self.previous_infections_dict["ratios"][region.name]
            people = region.people
            to_infect_by_age = self._get_people_to_infect_by_age(
                people=people, seroprev_by_age=seroprev_by_age
            )
            total_to_infect = sum(to_infect_by_age.values())
            age_distribution = {
                age: to_infect_by_age[age] / total_to_infect for age in to_infect_by_age
            }
            households = np.array(region.households)
            scores = [
                self._get_household_score(h, age_distribution) for h in households
            ]
            cum_scores = np.cumsum(scores)
            prev_inf_households = set()
            while total_to_infect > 0:
                num = random() * cum_scores[-1]
                idx = np.searchsorted(cum_scores, num)
                household = households[idx]
                if household.id in prev_inf_households:
                    continue
                for person in household.residents:
                    for inf_id, inf_data in zip(infection_ids, infection_data):
                        target_symptom_mult = 1.0 - inf_data["symptomatic_efficacy"]
                        target_susceptibility = 1.0 - inf_data["sterilisation_efficacy"]
                        current_multiplier = person.immunity.get_effective_multiplier(
                            inf_id
                        )
                        current_susc = person.immunity.get_susceptibility(inf_id)
                        person.immunity.effective_multiplier_dict[inf_id] = min(
                            current_multiplier, target_symptom_mult
                        )
                        person.immunity.susceptibility_dict[inf_id] = min(
                            current_susc, target_susceptibility
                        )
                    total_to_infect -= 1
                    if total_to_infect < 1:
                        return
                    prev_inf_households.add(household.id)

__init__(susceptibility_dict=default_susceptibility_dict, multiplier_dict=default_multiplier_dict, vaccination_dict=None, previous_infections_dict=None, multiplier_by_comorbidity=None, comorbidity_prevalence_reference_population=None, susceptibility_mode='average', previous_infections_distribution='uniform', record=None)

Sets immnuity parameters to different viruses.

Parameters

susceptibility_dict: A dictionary mapping infection_id -> susceptibility by age. Example: susceptibility_dict = {"123" : {"0-50" : 0.5, "50-100" : 0.2}} multiplier_dict: A dictionary mapping infection_id -> symptoms reduction by age. Example: multiplier_dict = {"123" : {"0-50" : 0.5, "50-100" : 0.2}} vaccination_dict: A dictionary specifying the starting vaccination status of the population. Example: vaccination_dict = { "Pfizer": { "percentage_vaccinated": {"0-50": 0.7, "50-100": 1.0}, "infections": { Covid19.infection_id(): { "sterilisation_efficacy": {"0-100": 0.5}, "symptomatic_efficacy": {"0-100": 0.5}, }, }, }, "sputnik": { "percentage_vaccinated": {"0-30": 0.3, "30-100": 0.0}, "infections": { B117.infection_id(): { "sterilisation_efficacy": {"0-100": 0.8}, "symptomatic_efficacy": {"0-100": 0.8}, }, }, }, } previous_infections_dict: A dictionary specifying the current seroprevalence per region and age. Example: previous_infections_dict = { "infections": { Covid19.infection_id(): { "sterilisation_efficacy": 0.5, "symptomatic_efficacy": 0.6, }, B117.infection_id(): { "sterilisation_efficacy": 0.2, "symptomatic_efficacy": 0.3, }, }, "ratios": { "London": {"0-50": 0.5, "50-100": 0.2}, "North East": {"0-70": 0.3, "70-100": 0.8}, }, }

Source code in june/epidemiology/infection/immunity_setter.py
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
def __init__(
    self,
    susceptibility_dict: dict = default_susceptibility_dict,
    multiplier_dict: dict = default_multiplier_dict,
    vaccination_dict: dict = None,
    previous_infections_dict=None,
    multiplier_by_comorbidity: Optional[dict] = None,
    comorbidity_prevalence_reference_population: Optional[dict] = None,
    susceptibility_mode="average",
    previous_infections_distribution="uniform",
    record: "Record" = None,
):
    """
    Sets immnuity parameters to different viruses.

    Parameters
    ----------
    susceptibility_dict:
       A dictionary mapping infection_id -> susceptibility by age.
       Example:
        susceptibility_dict = {"123" : {"0-50" : 0.5, "50-100" : 0.2}}
    multiplier_dict:
       A dictionary mapping infection_id -> symptoms reduction by age.
       Example:
        multiplier_dict = {"123" : {"0-50" : 0.5, "50-100" : 0.2}}
    vaccination_dict:
        A dictionary specifying the starting vaccination status of the population.
        Example:
            vaccination_dict = {
                "Pfizer": {
                    "percentage_vaccinated": {"0-50": 0.7, "50-100": 1.0},
                    "infections": {
                        Covid19.infection_id(): {
                            "sterilisation_efficacy": {"0-100": 0.5},
                            "symptomatic_efficacy": {"0-100": 0.5},
                        },
                    },
                },
                "sputnik": {
                    "percentage_vaccinated": {"0-30": 0.3, "30-100": 0.0},
                    "infections": {
                        B117.infection_id(): {
                            "sterilisation_efficacy": {"0-100": 0.8},
                            "symptomatic_efficacy": {"0-100": 0.8},
                        },
                    },
                },
            }
        previous_infections_dict:
            A dictionary specifying the current seroprevalence per region and age.
            Example:
                previous_infections_dict = {
                    "infections": {
                        Covid19.infection_id(): {
                            "sterilisation_efficacy": 0.5,
                            "symptomatic_efficacy": 0.6,
                        },
                        B117.infection_id(): {
                            "sterilisation_efficacy": 0.2,
                            "symptomatic_efficacy": 0.3,
                        },
                    },
                    "ratios": {
                        "London": {"0-50": 0.5, "50-100": 0.2},
                        "North East": {"0-70": 0.3, "70-100": 0.8},
                    },
                }
    """
    self.susceptibility_dict = self._read_susceptibility_dict(susceptibility_dict)
    if multiplier_dict is None:
        self.multiplier_dict = {}
    else:
        self.multiplier_dict = multiplier_dict
    self.vaccination_dict = self._read_vaccination_dict(vaccination_dict)
    self.previous_infections_dict = self._read_previous_infections_dict(
        previous_infections_dict
    )
    self.multiplier_by_comorbidity = multiplier_by_comorbidity
    if comorbidity_prevalence_reference_population is not None:
        self.comorbidity_prevalence_reference_population = (
            parse_prevalence_comorbidities_in_reference_population(
                comorbidity_prevalence_reference_population
            )
        )
    else:
        self.comorbidity_prevalence_reference_population = None
    self.susceptibility_mode = susceptibility_mode
    self.previous_infections_distribution = previous_infections_distribution
    self.record = record

from_file_with_comorbidities(susceptibility_dict=default_susceptibility_dict, multiplier_dict=default_multiplier_dict, vaccination_dict=None, previous_infections_dict=None, comorbidity_multipliers_path=None, male_comorbidity_reference_prevalence_path=None, female_comorbidity_reference_prevalence_path=None, susceptibility_mode='average', record=None) classmethod

Parameters:

Name Type Description Default
susceptibility_dict dict

(Default value = default_susceptibility_dict)

default_susceptibility_dict
multiplier_dict dict

(Default value = default_multiplier_dict)

default_multiplier_dict
vaccination_dict dict

(Default value = None)

None
previous_infections_dict dict

(Default value = None)

None
comorbidity_multipliers_path Optional[str]

(Default value = None)

None
male_comorbidity_reference_prevalence_path Optional[str]

(Default value = None)

None
female_comorbidity_reference_prevalence_path Optional[str]

(Default value = None)

None
susceptibility_mode

(Default value = "average")

'average'
record Record

(Default value = None)

None
Source code in june/epidemiology/infection/immunity_setter.py
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
@classmethod
def from_file_with_comorbidities(
    cls,
    susceptibility_dict: dict = default_susceptibility_dict,
    multiplier_dict: dict = default_multiplier_dict,
    vaccination_dict: dict = None,
    previous_infections_dict: dict = None,
    comorbidity_multipliers_path: Optional[str] = None,
    male_comorbidity_reference_prevalence_path: Optional[str] = None,
    female_comorbidity_reference_prevalence_path: Optional[str] = None,
    susceptibility_mode="average",
    record: "Record" = None,
) -> "ImmunitySetter":
    """

    Args:
        susceptibility_dict (dict, optional): (Default value = default_susceptibility_dict)
        multiplier_dict (dict, optional): (Default value = default_multiplier_dict)
        vaccination_dict (dict, optional): (Default value = None)
        previous_infections_dict (dict, optional): (Default value = None)
        comorbidity_multipliers_path (Optional[str], optional): (Default value = None)
        male_comorbidity_reference_prevalence_path (Optional[str], optional): (Default value = None)
        female_comorbidity_reference_prevalence_path (Optional[str], optional): (Default value = None)
        susceptibility_mode: (Default value = "average")
        record ("Record", optional): (Default value = None)

    """
    if comorbidity_multipliers_path is not None:
        with open(comorbidity_multipliers_path) as f:
            comorbidity_multipliers = yaml.load(f, Loader=yaml.FullLoader)
        female_prevalence = read_comorbidity_csv(
            female_comorbidity_reference_prevalence_path
        )
        male_prevalence = read_comorbidity_csv(
            male_comorbidity_reference_prevalence_path
        )
        comorbidity_prevalence_reference_population = (
            convert_comorbidities_prevalence_to_dict(
                female_prevalence, male_prevalence
            )
        )
    else:
        comorbidity_multipliers = None
        comorbidity_prevalence_reference_population = None
    return ImmunitySetter(
        susceptibility_dict=susceptibility_dict,
        multiplier_dict=multiplier_dict,
        vaccination_dict=vaccination_dict,
        previous_infections_dict=previous_infections_dict,
        multiplier_by_comorbidity=comorbidity_multipliers,
        comorbidity_prevalence_reference_population=comorbidity_prevalence_reference_population,
        susceptibility_mode=susceptibility_mode,
        record=record,
    )

get_multiplier_from_reference_prevalence(age, sex)

Compute mean comorbidity multiplier given the prevalence of the different comorbidities in the reference population (for example the UK). It will be used to remove effect of comorbidities in the reference population

Parameters:

Name Type Description Default
age

age group to compute average multiplier

required
sex
required
Source code in june/epidemiology/infection/immunity_setter.py
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
def get_multiplier_from_reference_prevalence(self, age, sex):
    """Compute mean comorbidity multiplier given the prevalence of the different comorbidities
    in the reference population (for example the UK). It will be used to remove effect of
    comorbidities in the reference population

    Args:
        age: age group to compute average multiplier
        sex: 

    """
    weighted_multiplier = 0.0
    for comorbidity in self.comorbidity_prevalence_reference_population.keys():
        weighted_multiplier += (
            self.multiplier_by_comorbidity[comorbidity]
            * self.comorbidity_prevalence_reference_population[comorbidity][sex][
                age
            ]
        )
    return weighted_multiplier

get_weighted_multipliers_by_age_sex()

Source code in june/epidemiology/infection/immunity_setter.py
224
225
226
227
228
229
230
231
232
233
234
def get_weighted_multipliers_by_age_sex(
    self,
):
    """ """
    reference_multipliers = {"m": [], "f": []}
    for sex in ("m", "f"):
        for age in range(100):
            reference_multipliers[sex].append(
                self.get_multiplier_from_reference_prevalence(age=age, sex=sex)
            )
    return reference_multipliers

set_immunity(world)

Parameters:

Name Type Description Default
world
required
Source code in june/epidemiology/infection/immunity_setter.py
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
def set_immunity(self, world):
    """

    Args:
        world: 

    """
    if self.multiplier_dict:
        self.set_multipliers(world.people)
    if self.susceptibility_dict:
        self.set_susceptibilities(world.people)
    if self.previous_infections_dict:
        self.set_previous_infections(world)
    if self.vaccination_dict:
        self.set_vaccinations(world.people)

set_multipliers(population)

Parameters:

Name Type Description Default
population
required
Source code in june/epidemiology/infection/immunity_setter.py
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
def set_multipliers(self, population):
    """

    Args:
        population: 

    """
    if (
        self.multiplier_by_comorbidity is not None
        and self.comorbidity_prevalence_reference_population is not None
    ):
        set_comorbidity_multipliers = True
        reference_weighted_multipliers = self.get_weighted_multipliers_by_age_sex()
    else:
        set_comorbidity_multipliers = False
    for person in population:
        for inf_id in self.multiplier_dict:
            person.immunity.effective_multiplier_dict[
                inf_id
            ] = self.multiplier_dict[inf_id]
            if set_comorbidity_multipliers:
                multiplier = self.multiplier_by_comorbidity.get(
                    person.comorbidity, 1.0
                )
                reference_multiplier = reference_weighted_multipliers[person.sex][
                    person.age
                ]
                person.immunity.effective_multiplier_dict[inf_id] += (
                    multiplier / reference_multiplier
                ) - 1.0

set_previous_infections(world)

Parameters:

Name Type Description Default
world
required
Source code in june/epidemiology/infection/immunity_setter.py
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
def set_previous_infections(self, world):
    """

    Args:
        world: 

    """
    if self.previous_infections_distribution == "uniform":
        self.set_previous_infections_uniform(world.people)
    elif self.previous_infections_distribution == "clustered":
        self.set_previous_infections_clustered(world)
    else:
        raise ValueError(
            f"Previous infection distr. {self.previous_infections_distribution} not recognised"
        )

set_previous_infections_clustered(world)

Sets previous infections on the starting population by clustering households.

Parameters:

Name Type Description Default
world
required
Source code in june/epidemiology/infection/immunity_setter.py
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
def set_previous_infections_clustered(self, world):
    """Sets previous infections on the starting population by clustering households.

    Args:
        world: 

    """
    infection_ids = list(self.previous_infections_dict["infections"].keys())
    infection_data = list(self.previous_infections_dict["infections"].values())
    for region in world.regions:
        seroprev_by_age = self.previous_infections_dict["ratios"][region.name]
        people = region.people
        to_infect_by_age = self._get_people_to_infect_by_age(
            people=people, seroprev_by_age=seroprev_by_age
        )
        total_to_infect = sum(to_infect_by_age.values())
        age_distribution = {
            age: to_infect_by_age[age] / total_to_infect for age in to_infect_by_age
        }
        households = np.array(region.households)
        scores = [
            self._get_household_score(h, age_distribution) for h in households
        ]
        cum_scores = np.cumsum(scores)
        prev_inf_households = set()
        while total_to_infect > 0:
            num = random() * cum_scores[-1]
            idx = np.searchsorted(cum_scores, num)
            household = households[idx]
            if household.id in prev_inf_households:
                continue
            for person in household.residents:
                for inf_id, inf_data in zip(infection_ids, infection_data):
                    target_symptom_mult = 1.0 - inf_data["symptomatic_efficacy"]
                    target_susceptibility = 1.0 - inf_data["sterilisation_efficacy"]
                    current_multiplier = person.immunity.get_effective_multiplier(
                        inf_id
                    )
                    current_susc = person.immunity.get_susceptibility(inf_id)
                    person.immunity.effective_multiplier_dict[inf_id] = min(
                        current_multiplier, target_symptom_mult
                    )
                    person.immunity.susceptibility_dict[inf_id] = min(
                        current_susc, target_susceptibility
                    )
                total_to_infect -= 1
                if total_to_infect < 1:
                    return
                prev_inf_households.add(household.id)

set_previous_infections_uniform(population)

Sets previous infections on the starting population in a uniform way.

Parameters:

Name Type Description Default
population
required
Source code in june/epidemiology/infection/immunity_setter.py
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
def set_previous_infections_uniform(self, population):
    """Sets previous infections on the starting population in a uniform way.

    Args:
        population: 

    """
    for i, person in enumerate(population):
        if person.region.name not in self.previous_infections_dict["ratios"]:
            continue
        ratio = self.previous_infections_dict["ratios"][person.region.name][
            person.age
        ]
        if random() < ratio:
            for inf_id, inf_data in self.previous_infections_dict[
                "infections"
            ].items():
                person.immunity.add_multiplier(
                    inf_id, 1.0 - inf_data["symptomatic_efficacy"]
                )
                person.immunity.susceptibility_dict[inf_id] = (
                    1.0 - inf_data["sterilisation_efficacy"]
                )

set_susceptibilities(population)

Parameters:

Name Type Description Default
population
required
Source code in june/epidemiology/infection/immunity_setter.py
323
324
325
326
327
328
329
330
331
332
333
334
335
def set_susceptibilities(self, population):
    """

    Args:
        population: 

    """
    if self.susceptibility_mode == "average":
        self._set_susceptibilities_avg(population)
    elif self.susceptibility_mode == "individual":
        self._set_susceptibilities_individual(population)
    else:
        raise NotImplementedError()

set_vaccinations(population)

Sets previous vaccination on the starting population.

Parameters:

Name Type Description Default
population
required
Source code in june/epidemiology/infection/immunity_setter.py
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
def set_vaccinations(self, population):
    """Sets previous vaccination on the starting population.

    Args:
        population: 

    """
    vaccine_type = []
    susccesfully_vaccinated = np.zeros(len(population), dtype=int)
    if not self.vaccination_dict:
        return
    vaccines = list(self.vaccination_dict.keys())
    for i, person in enumerate(population):
        if person.age > 99:
            age = 99
        else:
            age = person.age
        vaccination_rates = np.array(
            [
                self.vaccination_dict[vaccine]["percentage_vaccinated"][age]
                for vaccine in vaccines
            ]
        )
        total_vacc_rate = np.sum(vaccination_rates)
        if random() < total_vacc_rate:
            vaccination_rates /= total_vacc_rate
            vaccine = np.random.choice(vaccines, p=vaccination_rates)
            vdata = self.vaccination_dict[vaccine]
            for inf_id, inf_data in vdata["infections"].items():
                person.immunity.add_multiplier(
                    inf_id, 1.0 - inf_data["symptomatic_efficacy"][age]
                )
                person.immunity.susceptibility_dict[inf_id] = (
                    1.0 - inf_data["sterilisation_efficacy"][age]
                )
                susccesfully_vaccinated[i] = 1
            person.vaccinated = True
            vaccine_type.append(vaccine)
        else:
            vaccine_type.append("none")
    if self.record is not None:
        self.record.statics["people"].extra_str_data["vaccine_type"] = vaccine_type
        self.record.statics["people"].extra_int_data[
            "susccesfully_vaccinated"
        ] = susccesfully_vaccinated