Skip to content

Company

Companies

Bases: Supergroup

Source code in june/groups/company.py
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
class Companies(Supergroup):
    """ """
    venue_class = Company

    def __init__(self, companies: List["Companies"]):
        """
        Create companies and provide functionality to allocate workers.

        Parameters
        ----------
        company_size_per_superarea_df: pd.DataFram
            Nr. of companies within a size-range per SuperArea.

        compsec_per_msoa_df: pd.DataFrame
            Nr. of companies per sector sector per SuperArea.
        """
        super().__init__(members=companies)

    @classmethod
    def for_geography(
        cls,
        geography: Geography,
        size_nr_file: str = None,
        sector_nr_per_msoa_file: str = None,
        sct_companies_file: str = None,
        ew_companies_file: str = None,
        ni_companies_file: str = None
    ) -> "Companies":
        """Creates companies for the specified geography, and saves them
        to the super_areas they belong to.

        Args:
            geography (Geography): 
            size_nr_file (str, optional): (Default value = None)
            sector_nr_per_msoa_file (str, optional): (Default value = None)
            sct_companies_file (str, optional): (Default value = None)
            ew_companies_file (str, optional): (Default value = None)
            ni_companies_file (str, optional): (Default value = None)

        """
        if not geography.super_areas:
            raise CompanyError("Empty geography!")
        # After creating the companies
        companies = cls.for_super_areas(
            geography.super_areas,
            size_nr_file,
            sector_nr_per_msoa_file,
            sct_companies_file,
            ew_companies_file,
            ni_companies_file
        )
        logger.info(f"There are {len(companies)} companies in this geography.")


        # Sample 5 companies from each super area for visualization
        sampled_companies = []
        for super_area in geography.super_areas:
            if hasattr(super_area, 'companies') and super_area.companies:
                # Sample 5 companies or fewer if there are less than 5
                sample_companies = random.sample(super_area.companies, min(5, len(super_area.companies)))
                for company in sample_companies:
                    sampled_companies.append({
                        "| Company ID": company.id,
                        "| Super Area": super_area.name,
                        "| Company Sector": company.sector,
                        "| Number of Workers": company.n_workers,
                        "| Coordinates": company.coordinates,
                        "| Max Workers": company.n_workers_max
                    })

        # Convert the sample data to a DataFrame
        df_companies = pd.DataFrame(sampled_companies)
        print("\n===== Sample of Created Companies =====")
        print(df_companies)

        return companies

    @classmethod
    def for_super_areas(
        cls,
        super_areas: List[SuperArea],
        size_nr_per_super_area_file: str = None,
        sector_nr_per_super_area_file: str = None,
        sct_companies_file: str = None,
        ew_companies_file: str = None,
        ni_companies_file: str = None
        ) -> "Companies":
        """Creates companies for the specified super_areas, and saves them
        to the super_areas they belong to.

        Args:
            super_areas (List[SuperArea]): 
            size_nr_per_super_area_file (str, optional): (Default value = None)
            sector_nr_per_super_area_file (str, optional): (Default value = None)
            sct_companies_file (str, optional): (Default value = None)
            ew_companies_file (str, optional): (Default value = None)
            ni_companies_file (str, optional): (Default value = None)

        """
        # Always try to use companies files first (auto-detect), fallback to old CSV method
        try:
            return cls.from_companies_file(super_areas, sct_companies_file, ew_companies_file, ni_companies_file)
        except (FileNotFoundError, KeyError, pd.errors.EmptyDataError):
            # Fallback to old CSV-based method if companies files don't exist or are empty
            logger.info("Companies files not found or empty, falling back to legacy CSV method")

        # Check if legacy CSV files are provided
        if size_nr_per_super_area_file is None or sector_nr_per_super_area_file is None:
            raise CompanyError("No company files available. Please provide either companies files or legacy CSV files.")

        size_per_superarea_df = pd.read_csv(size_nr_per_super_area_file, index_col=0)
        sector_per_superarea_df = pd.read_csv(
            sector_nr_per_super_area_file, index_col=0
        )
        super_area_names = [super_area.name for super_area in super_areas]
        company_sizes_per_super_area = size_per_superarea_df.loc[super_area_names]
        company_sectors_per_super_area = sector_per_superarea_df.loc[super_area_names]
        assert len(company_sectors_per_super_area) == len(company_sizes_per_super_area)
        if len(company_sectors_per_super_area) == 1:
            super_area = super_areas[0]
            companies = cls.create_companies_in_super_area(
                super_area, company_sizes_per_super_area, company_sectors_per_super_area
            )
            super_area.companies = companies
        else:
            companies = []
            for super_area, (_, company_sizes), (_, company_sectors) in zip(
                super_areas,
                company_sizes_per_super_area.iterrows(),
                company_sectors_per_super_area.iterrows(),
            ):
                super_area.companies = cls.create_companies_in_super_area(
                    super_area, company_sizes, company_sectors
                )
                companies += super_area.companies


        return cls(companies)

    @classmethod
    def from_companies_file(
        cls,
        super_areas: List[SuperArea],
        sct_companies_file: str = None,
        ew_companies_file: str = None,
        ni_companies_file: str = None
    ) -> "Companies":
        """Optimized company creation from CSV files with pre-filtering and vectorized operations.
        CSV format: company_id,super_area,industry_code,size_band,employee_count

        Supports mixed geographies by loading from SCT, EW, and NI files as needed:
        - Scotland super areas (S02*): Uses SCT file
        - England/Wales super areas (E02*, W02*): Uses EW file
        - Northern Ireland super areas (N*): Uses NI file

        Args:
            super_areas (List[SuperArea]): 
            sct_companies_file (str, optional): (Default value = None)
            ew_companies_file (str, optional): (Default value = None)
            ni_companies_file (str, optional): (Default value = None)

        """
        super_area_names = [super_area.name for super_area in super_areas]

        # Separate areas by region
        scotland_areas = [name for name in super_area_names if name.startswith('S02')]
        ew_areas = [name for name in super_area_names if name.startswith(('E02', 'W02'))]
        ni_areas = [name for name in super_area_names if name.startswith('N')]

        companies_df_list = []

        # Optimized CSV loading with pre-filtering
        def load_companies_optimized(file_path, target_areas, region_name):
            """

            Args:
                file_path: 
                target_areas: 
                region_name: 

            """
            if not target_areas:
                return None

            logger.info(f"Loading {region_name} companies from: {file_path}")
            try:
                # Read with chunking for memory efficiency on large files
                chunk_size = 50000
                filtered_chunks = []

                for chunk in pd.read_csv(file_path, chunksize=chunk_size):
                    # Pre-filter chunk to only include our target areas (major optimization!)
                    filtered_chunk = chunk[chunk['super_area'].isin(target_areas)]
                    if not filtered_chunk.empty:
                        filtered_chunks.append(filtered_chunk)

                if not filtered_chunks:
                    logger.warning(f"No companies found for {region_name} areas in {file_path}")
                    return None

                result_df = pd.concat(filtered_chunks, ignore_index=True)
                logger.info(f"Found {len(result_df)} {region_name} companies for {len(target_areas)} areas")
                return result_df

            except FileNotFoundError:
                logger.warning(f"{region_name} companies file not found: {file_path}")
                return None

        # Load each region with optimized filtering
        if scotland_areas:
            sct_file = sct_companies_file if sct_companies_file else default_sct_companies_file
            sct_df = load_companies_optimized(sct_file, scotland_areas, "SCT")
            if sct_df is not None:
                companies_df_list.append(sct_df)

        if ew_areas:
            ew_file = ew_companies_file if ew_companies_file else default_ew_companies_file
            ew_df = load_companies_optimized(ew_file, ew_areas, "EW")
            if ew_df is not None:
                companies_df_list.append(ew_df)

        if ni_areas:
            ni_file = ni_companies_file if ni_companies_file else default_ni_companies_file
            ni_df = load_companies_optimized(ni_file, ni_areas, "NI")
            if ni_df is not None:
                companies_df_list.append(ni_df)

        # Combine all company dataframes
        if not companies_df_list:
            raise FileNotFoundError("No company files found or loaded successfully")

        companies_df = pd.concat(companies_df_list, ignore_index=True)
        logger.info(f"Total companies loaded: {len(companies_df)} for {len(super_area_names)} super areas")

        # MAJOR OPTIMIZATION: Use groupby instead of nested loops
        companies = []

        # Group companies by super_area for vectorized processing  
        companies_by_area = companies_df.groupby('super_area')

        for super_area in super_areas:
            try:
                area_companies_df = companies_by_area.get_group(super_area.name)
            except KeyError:
                # No companies for this super area
                super_area.companies = []
                continue

            # Vectorized company creation using apply or list comprehension
            super_area_companies = []

            # Use itertuples for faster iteration (3x faster than iterrows)
            for row in area_companies_df.itertuples(index=False):
                company = cls.venue_class(
                    super_area=super_area,
                    n_workers_max=row.employee_count,
                    sector=str(row.industry_code),
                    registered_members_ids={}
                )
                super_area_companies.append(company)
                companies.append(company)

            super_area.companies = super_area_companies
            logger.debug(f"Created {len(super_area_companies)} companies for super area {super_area.name}")

        return cls(companies)

    @classmethod
    def from_sct_companies_file(
        cls,
        super_areas: List[SuperArea],
        sct_companies_file: str = None
    ) -> "Companies":
        """Legacy method for backward compatibility.
        Creates companies from SCT companies CSV file.

        Args:
            super_areas (List[SuperArea]): 
            sct_companies_file (str, optional): (Default value = None)

        """
        return cls.from_companies_file(super_areas, sct_companies_file=sct_companies_file)

    @classmethod
    def create_companies_in_super_area(
        cls, super_area: SuperArea, company_sizes, company_sectors
    ) -> list:
        """Creates companies in a super area using the sizes and sectors distributions.

        Args:
            super_area (SuperArea): 
            company_sizes: 
            company_sectors: 

        """
        sizes = np.array([])
        for size_bracket, counts in company_sizes.items():
            size_min, size_max = _get_size_brackets(size_bracket)
            sizes = np.concatenate(
                (sizes, np.random.randint(max(size_min, 1), size_max, int(counts)))
            )
        np.random.shuffle(sizes)
        sectors = []
        for sector, counts in company_sectors.items():
            sectors += [sector] * int(counts)
        shuffle(sectors)
        companies = list(
            map(
                lambda company_size, company_sector: cls.create_company(
                    super_area, company_size, company_sector
                ),
                sizes,
                sectors,
            )
        )
        return companies

    @classmethod
    def create_company(cls, super_area, company_size, company_sector):
        """Create a company instance.

        Args:
            super_area (SuperArea): The area the company belongs to.
            company_size (int): Maximum number of workers the company can accommodate.
            company_sector (str): The sector the company belongs to.

        Returns:
            Company: A new company instance.

        """
        company = cls.venue_class(
            super_area=super_area,
            n_workers_max=company_size,
            sector=company_sector,
            registered_members_ids={}  # Initialise as an empty dictionary for subgroup support
        )
        return company

__init__(companies)

Create companies and provide functionality to allocate workers.

Parameters

company_size_per_superarea_df: pd.DataFram Nr. of companies within a size-range per SuperArea.

pd.DataFrame

Nr. of companies per sector sector per SuperArea.

Source code in june/groups/company.py
151
152
153
154
155
156
157
158
159
160
161
162
163
def __init__(self, companies: List["Companies"]):
    """
    Create companies and provide functionality to allocate workers.

    Parameters
    ----------
    company_size_per_superarea_df: pd.DataFram
        Nr. of companies within a size-range per SuperArea.

    compsec_per_msoa_df: pd.DataFrame
        Nr. of companies per sector sector per SuperArea.
    """
    super().__init__(members=companies)

create_companies_in_super_area(super_area, company_sizes, company_sectors) classmethod

Creates companies in a super area using the sizes and sectors distributions.

Parameters:

Name Type Description Default
super_area SuperArea
required
company_sizes
required
company_sectors
required
Source code in june/groups/company.py
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
@classmethod
def create_companies_in_super_area(
    cls, super_area: SuperArea, company_sizes, company_sectors
) -> list:
    """Creates companies in a super area using the sizes and sectors distributions.

    Args:
        super_area (SuperArea): 
        company_sizes: 
        company_sectors: 

    """
    sizes = np.array([])
    for size_bracket, counts in company_sizes.items():
        size_min, size_max = _get_size_brackets(size_bracket)
        sizes = np.concatenate(
            (sizes, np.random.randint(max(size_min, 1), size_max, int(counts)))
        )
    np.random.shuffle(sizes)
    sectors = []
    for sector, counts in company_sectors.items():
        sectors += [sector] * int(counts)
    shuffle(sectors)
    companies = list(
        map(
            lambda company_size, company_sector: cls.create_company(
                super_area, company_size, company_sector
            ),
            sizes,
            sectors,
        )
    )
    return companies

create_company(super_area, company_size, company_sector) classmethod

Create a company instance.

Parameters:

Name Type Description Default
super_area SuperArea

The area the company belongs to.

required
company_size int

Maximum number of workers the company can accommodate.

required
company_sector str

The sector the company belongs to.

required

Returns:

Name Type Description
Company

A new company instance.

Source code in june/groups/company.py
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
@classmethod
def create_company(cls, super_area, company_size, company_sector):
    """Create a company instance.

    Args:
        super_area (SuperArea): The area the company belongs to.
        company_size (int): Maximum number of workers the company can accommodate.
        company_sector (str): The sector the company belongs to.

    Returns:
        Company: A new company instance.

    """
    company = cls.venue_class(
        super_area=super_area,
        n_workers_max=company_size,
        sector=company_sector,
        registered_members_ids={}  # Initialise as an empty dictionary for subgroup support
    )
    return company

for_geography(geography, size_nr_file=None, sector_nr_per_msoa_file=None, sct_companies_file=None, ew_companies_file=None, ni_companies_file=None) classmethod

Creates companies for the specified geography, and saves them to the super_areas they belong to.

Parameters:

Name Type Description Default
geography Geography
required
size_nr_file str

(Default value = None)

None
sector_nr_per_msoa_file str

(Default value = None)

None
sct_companies_file str

(Default value = None)

None
ew_companies_file str

(Default value = None)

None
ni_companies_file str

(Default value = None)

None
Source code in june/groups/company.py
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
@classmethod
def for_geography(
    cls,
    geography: Geography,
    size_nr_file: str = None,
    sector_nr_per_msoa_file: str = None,
    sct_companies_file: str = None,
    ew_companies_file: str = None,
    ni_companies_file: str = None
) -> "Companies":
    """Creates companies for the specified geography, and saves them
    to the super_areas they belong to.

    Args:
        geography (Geography): 
        size_nr_file (str, optional): (Default value = None)
        sector_nr_per_msoa_file (str, optional): (Default value = None)
        sct_companies_file (str, optional): (Default value = None)
        ew_companies_file (str, optional): (Default value = None)
        ni_companies_file (str, optional): (Default value = None)

    """
    if not geography.super_areas:
        raise CompanyError("Empty geography!")
    # After creating the companies
    companies = cls.for_super_areas(
        geography.super_areas,
        size_nr_file,
        sector_nr_per_msoa_file,
        sct_companies_file,
        ew_companies_file,
        ni_companies_file
    )
    logger.info(f"There are {len(companies)} companies in this geography.")


    # Sample 5 companies from each super area for visualization
    sampled_companies = []
    for super_area in geography.super_areas:
        if hasattr(super_area, 'companies') and super_area.companies:
            # Sample 5 companies or fewer if there are less than 5
            sample_companies = random.sample(super_area.companies, min(5, len(super_area.companies)))
            for company in sample_companies:
                sampled_companies.append({
                    "| Company ID": company.id,
                    "| Super Area": super_area.name,
                    "| Company Sector": company.sector,
                    "| Number of Workers": company.n_workers,
                    "| Coordinates": company.coordinates,
                    "| Max Workers": company.n_workers_max
                })

    # Convert the sample data to a DataFrame
    df_companies = pd.DataFrame(sampled_companies)
    print("\n===== Sample of Created Companies =====")
    print(df_companies)

    return companies

for_super_areas(super_areas, size_nr_per_super_area_file=None, sector_nr_per_super_area_file=None, sct_companies_file=None, ew_companies_file=None, ni_companies_file=None) classmethod

Creates companies for the specified super_areas, and saves them to the super_areas they belong to.

Parameters:

Name Type Description Default
super_areas List[SuperArea]
required
size_nr_per_super_area_file str

(Default value = None)

None
sector_nr_per_super_area_file str

(Default value = None)

None
sct_companies_file str

(Default value = None)

None
ew_companies_file str

(Default value = None)

None
ni_companies_file str

(Default value = None)

None
Source code in june/groups/company.py
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
@classmethod
def for_super_areas(
    cls,
    super_areas: List[SuperArea],
    size_nr_per_super_area_file: str = None,
    sector_nr_per_super_area_file: str = None,
    sct_companies_file: str = None,
    ew_companies_file: str = None,
    ni_companies_file: str = None
    ) -> "Companies":
    """Creates companies for the specified super_areas, and saves them
    to the super_areas they belong to.

    Args:
        super_areas (List[SuperArea]): 
        size_nr_per_super_area_file (str, optional): (Default value = None)
        sector_nr_per_super_area_file (str, optional): (Default value = None)
        sct_companies_file (str, optional): (Default value = None)
        ew_companies_file (str, optional): (Default value = None)
        ni_companies_file (str, optional): (Default value = None)

    """
    # Always try to use companies files first (auto-detect), fallback to old CSV method
    try:
        return cls.from_companies_file(super_areas, sct_companies_file, ew_companies_file, ni_companies_file)
    except (FileNotFoundError, KeyError, pd.errors.EmptyDataError):
        # Fallback to old CSV-based method if companies files don't exist or are empty
        logger.info("Companies files not found or empty, falling back to legacy CSV method")

    # Check if legacy CSV files are provided
    if size_nr_per_super_area_file is None or sector_nr_per_super_area_file is None:
        raise CompanyError("No company files available. Please provide either companies files or legacy CSV files.")

    size_per_superarea_df = pd.read_csv(size_nr_per_super_area_file, index_col=0)
    sector_per_superarea_df = pd.read_csv(
        sector_nr_per_super_area_file, index_col=0
    )
    super_area_names = [super_area.name for super_area in super_areas]
    company_sizes_per_super_area = size_per_superarea_df.loc[super_area_names]
    company_sectors_per_super_area = sector_per_superarea_df.loc[super_area_names]
    assert len(company_sectors_per_super_area) == len(company_sizes_per_super_area)
    if len(company_sectors_per_super_area) == 1:
        super_area = super_areas[0]
        companies = cls.create_companies_in_super_area(
            super_area, company_sizes_per_super_area, company_sectors_per_super_area
        )
        super_area.companies = companies
    else:
        companies = []
        for super_area, (_, company_sizes), (_, company_sectors) in zip(
            super_areas,
            company_sizes_per_super_area.iterrows(),
            company_sectors_per_super_area.iterrows(),
        ):
            super_area.companies = cls.create_companies_in_super_area(
                super_area, company_sizes, company_sectors
            )
            companies += super_area.companies


    return cls(companies)

from_companies_file(super_areas, sct_companies_file=None, ew_companies_file=None, ni_companies_file=None) classmethod

Optimized company creation from CSV files with pre-filtering and vectorized operations. CSV format: company_id,super_area,industry_code,size_band,employee_count

Supports mixed geographies by loading from SCT, EW, and NI files as needed: - Scotland super areas (S02): Uses SCT file - England/Wales super areas (E02, W02): Uses EW file - Northern Ireland super areas (N): Uses NI file

Parameters:

Name Type Description Default
super_areas List[SuperArea]
required
sct_companies_file str

(Default value = None)

None
ew_companies_file str

(Default value = None)

None
ni_companies_file str

(Default value = None)

None
Source code in june/groups/company.py
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
@classmethod
def from_companies_file(
    cls,
    super_areas: List[SuperArea],
    sct_companies_file: str = None,
    ew_companies_file: str = None,
    ni_companies_file: str = None
) -> "Companies":
    """Optimized company creation from CSV files with pre-filtering and vectorized operations.
    CSV format: company_id,super_area,industry_code,size_band,employee_count

    Supports mixed geographies by loading from SCT, EW, and NI files as needed:
    - Scotland super areas (S02*): Uses SCT file
    - England/Wales super areas (E02*, W02*): Uses EW file
    - Northern Ireland super areas (N*): Uses NI file

    Args:
        super_areas (List[SuperArea]): 
        sct_companies_file (str, optional): (Default value = None)
        ew_companies_file (str, optional): (Default value = None)
        ni_companies_file (str, optional): (Default value = None)

    """
    super_area_names = [super_area.name for super_area in super_areas]

    # Separate areas by region
    scotland_areas = [name for name in super_area_names if name.startswith('S02')]
    ew_areas = [name for name in super_area_names if name.startswith(('E02', 'W02'))]
    ni_areas = [name for name in super_area_names if name.startswith('N')]

    companies_df_list = []

    # Optimized CSV loading with pre-filtering
    def load_companies_optimized(file_path, target_areas, region_name):
        """

        Args:
            file_path: 
            target_areas: 
            region_name: 

        """
        if not target_areas:
            return None

        logger.info(f"Loading {region_name} companies from: {file_path}")
        try:
            # Read with chunking for memory efficiency on large files
            chunk_size = 50000
            filtered_chunks = []

            for chunk in pd.read_csv(file_path, chunksize=chunk_size):
                # Pre-filter chunk to only include our target areas (major optimization!)
                filtered_chunk = chunk[chunk['super_area'].isin(target_areas)]
                if not filtered_chunk.empty:
                    filtered_chunks.append(filtered_chunk)

            if not filtered_chunks:
                logger.warning(f"No companies found for {region_name} areas in {file_path}")
                return None

            result_df = pd.concat(filtered_chunks, ignore_index=True)
            logger.info(f"Found {len(result_df)} {region_name} companies for {len(target_areas)} areas")
            return result_df

        except FileNotFoundError:
            logger.warning(f"{region_name} companies file not found: {file_path}")
            return None

    # Load each region with optimized filtering
    if scotland_areas:
        sct_file = sct_companies_file if sct_companies_file else default_sct_companies_file
        sct_df = load_companies_optimized(sct_file, scotland_areas, "SCT")
        if sct_df is not None:
            companies_df_list.append(sct_df)

    if ew_areas:
        ew_file = ew_companies_file if ew_companies_file else default_ew_companies_file
        ew_df = load_companies_optimized(ew_file, ew_areas, "EW")
        if ew_df is not None:
            companies_df_list.append(ew_df)

    if ni_areas:
        ni_file = ni_companies_file if ni_companies_file else default_ni_companies_file
        ni_df = load_companies_optimized(ni_file, ni_areas, "NI")
        if ni_df is not None:
            companies_df_list.append(ni_df)

    # Combine all company dataframes
    if not companies_df_list:
        raise FileNotFoundError("No company files found or loaded successfully")

    companies_df = pd.concat(companies_df_list, ignore_index=True)
    logger.info(f"Total companies loaded: {len(companies_df)} for {len(super_area_names)} super areas")

    # MAJOR OPTIMIZATION: Use groupby instead of nested loops
    companies = []

    # Group companies by super_area for vectorized processing  
    companies_by_area = companies_df.groupby('super_area')

    for super_area in super_areas:
        try:
            area_companies_df = companies_by_area.get_group(super_area.name)
        except KeyError:
            # No companies for this super area
            super_area.companies = []
            continue

        # Vectorized company creation using apply or list comprehension
        super_area_companies = []

        # Use itertuples for faster iteration (3x faster than iterrows)
        for row in area_companies_df.itertuples(index=False):
            company = cls.venue_class(
                super_area=super_area,
                n_workers_max=row.employee_count,
                sector=str(row.industry_code),
                registered_members_ids={}
            )
            super_area_companies.append(company)
            companies.append(company)

        super_area.companies = super_area_companies
        logger.debug(f"Created {len(super_area_companies)} companies for super area {super_area.name}")

    return cls(companies)

from_sct_companies_file(super_areas, sct_companies_file=None) classmethod

Legacy method for backward compatibility. Creates companies from SCT companies CSV file.

Parameters:

Name Type Description Default
super_areas List[SuperArea]
required
sct_companies_file str

(Default value = None)

None
Source code in june/groups/company.py
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
@classmethod
def from_sct_companies_file(
    cls,
    super_areas: List[SuperArea],
    sct_companies_file: str = None
) -> "Companies":
    """Legacy method for backward compatibility.
    Creates companies from SCT companies CSV file.

    Args:
        super_areas (List[SuperArea]): 
        sct_companies_file (str, optional): (Default value = None)

    """
    return cls.from_companies_file(super_areas, sct_companies_file=sct_companies_file)

Company

Bases: Group

The Company class represents a company that contains information about its workers which are not yet distributed to key company sectors (e.g. as schools and hospitals).

Currently we treat the workforce of a company as one single sub-group and therefore we invoke the base class group with the default Ngroups = 1. We made this explicit here, although it is not necessary.

Source code in june/groups/company.py
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
class Company(Group):
    """The Company class represents a company that contains information about
    its workers which are not yet distributed to key company sectors
    (e.g. as schools and hospitals).

    Currently we treat the workforce of a company as one single sub-group
    and therefore we invoke the base class group with the default Ngroups = 1.
    We made this explicit here, although it is not necessary.

    """

    __slots__ = ("super_area", "sector", "n_workers_max")

    def __init__(self, super_area=None, n_workers_max=np.inf, sector=None, registered_members_ids=None):
        """
        Initialise a Company instance.

        Parameters
        ----------
        disease_config : DiseaseConfig
            Configuration object for the disease.
        super_area : str, optional
            The area the company belongs to.
        n_workers_max : int, optional
            Maximum number of workers the company can accommodate (default is np.inf).
        sector : str, optional
            The sector the company belongs to.
        registered_members_ids : dict, optional
            A dict mapping subgroup IDs to lists of member IDs.
        """
        # Initialise the base Group class with disease_config
        super().__init__()

        # Assign attributes specific to Company
        self.super_area = super_area
        self.sector = sector
        self.n_workers_max = n_workers_max

        # Initialise registered_members_ids as a dictionary
        self.registered_members_ids = registered_members_ids if registered_members_ids is not None else {}

    def add(self, person):
        """

        Args:
            person: 

        """
        super().add(
            person,
            subgroup_type=self.get_index_subgroup(person),
            activity="primary_activity",
        )

    def add_to_registered_members(self, person_id, subgroup_type=0):
        """Add a person to the registered members list for a specific subgroup.

        Args:
            person_id (int): The ID of the person to add
            subgroup_type (int, optional, optional): The subgroup to add the person to (default: 0)

        """
        # Create the subgroup if it doesn't exist
        if subgroup_type not in self.registered_members_ids:
            self.registered_members_ids[subgroup_type] = []

        # Add the person if not already in the list
        if person_id not in self.registered_members_ids[subgroup_type]:
            self.registered_members_ids[subgroup_type].append(person_id)

    @property
    def n_workers(self):
        """ """
        return len(self.people)

    # @property
    # def workers(self):
    #     return self.subgroups[self.SubgroupType.workers]

    @property
    def coordinates(self):
        """ """
        return self.super_area.coordinates

    @property
    def area(self):
        """ """
        return self.super_area.areas[0]

    def get_interactive_group(self, people_from_abroad=None):
        """

        Args:
            people_from_abroad: (Default value = None)

        """
        return InteractiveCompany(self, people_from_abroad=people_from_abroad)

area property

coordinates property

n_workers property

__init__(super_area=None, n_workers_max=np.inf, sector=None, registered_members_ids=None)

Initialise a Company instance.

Parameters

disease_config : DiseaseConfig Configuration object for the disease. super_area : str, optional The area the company belongs to. n_workers_max : int, optional Maximum number of workers the company can accommodate (default is np.inf). sector : str, optional The sector the company belongs to. registered_members_ids : dict, optional A dict mapping subgroup IDs to lists of member IDs.

Source code in june/groups/company.py
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
def __init__(self, super_area=None, n_workers_max=np.inf, sector=None, registered_members_ids=None):
    """
    Initialise a Company instance.

    Parameters
    ----------
    disease_config : DiseaseConfig
        Configuration object for the disease.
    super_area : str, optional
        The area the company belongs to.
    n_workers_max : int, optional
        Maximum number of workers the company can accommodate (default is np.inf).
    sector : str, optional
        The sector the company belongs to.
    registered_members_ids : dict, optional
        A dict mapping subgroup IDs to lists of member IDs.
    """
    # Initialise the base Group class with disease_config
    super().__init__()

    # Assign attributes specific to Company
    self.super_area = super_area
    self.sector = sector
    self.n_workers_max = n_workers_max

    # Initialise registered_members_ids as a dictionary
    self.registered_members_ids = registered_members_ids if registered_members_ids is not None else {}

add(person)

Parameters:

Name Type Description Default
person
required
Source code in june/groups/company.py
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
def add(self, person):
    """

    Args:
        person: 

    """
    super().add(
        person,
        subgroup_type=self.get_index_subgroup(person),
        activity="primary_activity",
    )

add_to_registered_members(person_id, subgroup_type=0)

Add a person to the registered members list for a specific subgroup.

Parameters:

Name Type Description Default
person_id int

The ID of the person to add

required
subgroup_type (int, optional)

The subgroup to add the person to (default: 0)

0
Source code in june/groups/company.py
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
def add_to_registered_members(self, person_id, subgroup_type=0):
    """Add a person to the registered members list for a specific subgroup.

    Args:
        person_id (int): The ID of the person to add
        subgroup_type (int, optional, optional): The subgroup to add the person to (default: 0)

    """
    # Create the subgroup if it doesn't exist
    if subgroup_type not in self.registered_members_ids:
        self.registered_members_ids[subgroup_type] = []

    # Add the person if not already in the list
    if person_id not in self.registered_members_ids[subgroup_type]:
        self.registered_members_ids[subgroup_type].append(person_id)

get_interactive_group(people_from_abroad=None)

Parameters:

Name Type Description Default
people_from_abroad

(Default value = None)

None
Source code in june/groups/company.py
137
138
139
140
141
142
143
144
def get_interactive_group(self, people_from_abroad=None):
    """

    Args:
        people_from_abroad: (Default value = None)

    """
    return InteractiveCompany(self, people_from_abroad=people_from_abroad)

CompanyError

Bases: BaseException

Source code in june/groups/company.py
43
44
45
class CompanyError(BaseException):
    """ """
    pass

InteractiveCompany

Bases: InteractiveGroup

Source code in june/groups/company.py
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
class InteractiveCompany(InteractiveGroup):
    """ """
    sector_betas = _read_sector_betas()

    def __init__(self, group: "Group", people_from_abroad=None):
        super().__init__(group=group, people_from_abroad=people_from_abroad)
        self.sector = group.sector


    def get_processed_beta(self, betas, beta_reductions):
        """

        Args:
            betas: 
            beta_reductions: 

        """
        beta_processed = super().get_processed_beta(
            betas=betas, beta_reductions=beta_reductions
        )
        return beta_processed * self.sector_betas.get(self.sector, 1.0)

get_processed_beta(betas, beta_reductions)

Parameters:

Name Type Description Default
betas
required
beta_reductions
required
Source code in june/groups/company.py
502
503
504
505
506
507
508
509
510
511
512
513
def get_processed_beta(self, betas, beta_reductions):
    """

    Args:
        betas: 
        beta_reductions: 

    """
    beta_processed = super().get_processed_beta(
        betas=betas, beta_reductions=beta_reductions
    )
    return beta_processed * self.sector_betas.get(self.sector, 1.0)