Skip to content

Commute saver

load_cities_from_hdf5(file_path, domain_super_areas=None, super_areas_to_domain_dict=None)

Loads cities from an hdf5 file located at file_path. Note that this object will not be ready to use, as the links to object instances of other classes need to be restored first. This function should be rarely be called oustide world.py

Parameters:

Name Type Description Default
file_path str
required
domain_super_areas List[int]

(Default value = None)

None
super_areas_to_domain_dict dict

(Default value = None)

None
Source code in june/hdf5_savers/commute_saver.py
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
def load_cities_from_hdf5(
    file_path: str,
    domain_super_areas: List[int] = None,
    super_areas_to_domain_dict: dict = None,
):
    """Loads cities from an hdf5 file located at ``file_path``.
    Note that this object will not be ready to use, as the links to
    object instances of other classes need to be restored first.
    This function should be rarely be called oustide world.py

    Args:
        file_path (str): 
        domain_super_areas (List[int], optional): (Default value = None)
        super_areas_to_domain_dict (dict, optional): (Default value = None)

    """
    with h5py.File(file_path, "r", libver="latest", swmr=True) as f:
        cities = f["cities"]
        n_cities = cities.attrs["n_cities"]
        ids = read_dataset(cities["id"])
        names = read_dataset(cities["name"])
        coordinates = read_dataset(cities["coordinates"])
        super_areas_list = read_dataset(cities["super_areas"])
        city_super_areas = read_dataset(cities["city_super_area"])
        cities = []
        for k in range(n_cities):
            super_areas = [super_area.decode() for super_area in super_areas_list[k]]
            city_super_area = city_super_areas[k]
            if domain_super_areas is None or city_super_area in domain_super_areas:
                city = City(
                    name=names[k].decode(),
                    super_areas=super_areas,
                    coordinates=coordinates[k],
                )
                city.id = ids[k]
            else:
                # this city is external to the domain
                city = ExternalCity(
                    id=ids[k],
                    domain_id=super_areas_to_domain_dict[city_super_area],
                    commuter_ids=None,
                    name=names[k].decode(),
                )
            cities.append(city)
    return Cities(cities, ball_tree=False)

load_stations_from_hdf5(file_path, domain_super_areas=None, super_areas_to_domain_dict=None, config_filename=None)

Loads cities from an hdf5 file located at file_path. Note that this object will not be ready to use, as the links to object instances of other classes need to be restored first. This function should be rarely be called oustide world.py

Parameters:

Name Type Description Default
file_path str
required
domain_super_areas List[int]

(Default value = None)

None
super_areas_to_domain_dict dict

(Default value = None)

None
config_filename

(Default value = None)

None
Source code in june/hdf5_savers/commute_saver.py
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
def load_stations_from_hdf5(
    file_path: str,
    domain_super_areas: List[int] = None,
    super_areas_to_domain_dict: dict = None,
    config_filename=None,
):
    """Loads cities from an hdf5 file located at ``file_path``.
    Note that this object will not be ready to use, as the links to
    object instances of other classes need to be restored first.
    This function should be rarely be called oustide world.py

    Args:
        file_path (str): 
        domain_super_areas (List[int], optional): (Default value = None)
        super_areas_to_domain_dict (dict, optional): (Default value = None)
        config_filename: (Default value = None)

    """

    InterCityTransport_Class = InterCityTransport
    disease_config = GlobalContext.get_disease_config()
    InterCityTransport_Class.subgroup_params = SubgroupParams.from_disease_config(disease_config)

    CityTransport_Class = CityTransport
    CityTransport_Class.subgroup_params = SubgroupParams.from_disease_config(disease_config)

    with h5py.File(file_path, "r", libver="latest", swmr=True) as f:
        stations = f["stations"]
        n_stations = stations.attrs["n_stations"]
        ids = read_dataset(stations["id"])
        if len(stations["transport_ids"].shape) == 1:
            transport_ids = read_dataset(stations["transport_ids"])
        else:
            transport_ids = [[] for _ in range(stations["transport_ids"].len())]
        cities = read_dataset(stations["station_cities"])
        super_areas = read_dataset(stations["super_area"])
        types = read_dataset(stations["type"])
        stations = []
        inter_city_transports = []
        city_transports = []
        for k in range(n_stations):
            super_area = super_areas[k]
            transports_station = []
            station_type = types[k].decode()
            city = cities[k].decode()
            if domain_super_areas is None or super_area in domain_super_areas:
                if station_type == "inter":
                    station = InterCityStation(city=city)
                else:
                    station = CityStation(city=city)
                station.id = ids[k]
                for transport_id in transport_ids[k]:
                    if station_type == "inter":
                        transport = InterCityTransport_Class(station=station)
                    else:
                        transport = CityTransport_Class(station=station)
                    transport.id = transport_id
                    transports_station.append(transport)
            else:
                if station_type == "inter":
                    station = ExternalInterCityStation(
                        id=ids[k],
                        domain_id=super_areas_to_domain_dict[super_area],
                        city=city,
                    )
                else:
                    station = ExternalCityStation(
                        id=ids[k],
                        domain_id=super_areas_to_domain_dict[super_area],
                        city=city,
                    )
                for transport_id in transport_ids[k]:
                    if station_type == "inter":
                        transport = ExternalGroup(
                            domain_id=super_areas_to_domain_dict[super_area],
                            spec="inter_city_transport",
                            id=transport_id,
                            region_name=None,
                        )
                    else:
                        transport = ExternalGroup(
                            domain_id=super_areas_to_domain_dict[super_area],
                            spec="city_transport",
                            id=transport_id,
                            region_name=None,
                        )
                    transports_station.append(transport)
            if station_type == "inter":
                station.inter_city_transports = transports_station
                inter_city_transports += transports_station
            else:
                station.city_transports = transports_station
                city_transports += transports_station
            stations.append(station)
    return (
        Stations(stations),
        InterCityTransports(inter_city_transports),
        CityTransports(city_transports),
    )

restore_cities_and_stations_properties_from_hdf5(world, file_path, chunk_size, domain_super_areas=None, super_areas_to_domain_dict=None)

Parameters:

Name Type Description Default
world World
required
file_path str
required
chunk_size int
required
domain_super_areas List[int]

(Default value = None)

None
super_areas_to_domain_dict dict

(Default value = None)

None
Source code in june/hdf5_savers/commute_saver.py
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
def restore_cities_and_stations_properties_from_hdf5(
    world: World,
    file_path: str,
    chunk_size: int,
    domain_super_areas: List[int] = None,
    super_areas_to_domain_dict: dict = None,
):
    """

    Args:
        world (World): 
        file_path (str): 
        chunk_size (int): 
        domain_super_areas (List[int], optional): (Default value = None)
        super_areas_to_domain_dict (dict, optional): (Default value = None)

    """
    with h5py.File(file_path, "r", libver="latest", swmr=True) as f:
        # load cities data
        cities = f["cities"]
        n_cities = cities.attrs["n_cities"]
        city_ids = read_dataset(cities["id"])
        city_city_station_ids = read_dataset(cities["city_station_id"])
        city_inter_city_station_ids = read_dataset(cities["inter_city_station_id"])
        city_internal_commuters_list = read_dataset(cities["internal_commuters"])
        city_super_areas = read_dataset(cities["city_super_area"])
        # load stations data
        stations = f["stations"]
        n_stations = stations.attrs["n_stations"]
        station_ids = read_dataset(stations["id"])
        station_super_areas = read_dataset(stations["super_area"])
        if len(stations["commuters"].shape) == 1:
            station_commuters_list = read_dataset(stations["commuters"])
        else:
            station_commuters_list = [[] for _ in range(stations["commuters"].len())]
        for k in range(n_stations):
            station_id = station_ids[k]
            station = world.stations.get_from_id(station_id)
            station.commuter_ids = set([c_id for c_id in station_commuters_list[k]])
            station_super_area = station_super_areas[k]
            if domain_super_areas is None or station_super_area in domain_super_areas:
                station.super_area = world.super_areas.get_from_id(
                    station_super_areas[k]
                )

        for k in range(n_cities):
            city_id = city_ids[k]
            city_super_area = city_super_areas[k]
            city = world.cities.get_from_id(city_id)
            commuters = set(
                [commuter_id for commuter_id in city_internal_commuters_list[k]]
            )
            city.internal_commuter_ids = commuters
            city.city_stations = []
            city.inter_city_stations = []
            for station_id in city_city_station_ids[k]:
                station = world.stations.get_from_id(station_id)
                city.city_stations.append(station)
            for station_id in city_inter_city_station_ids[k]:
                station = world.stations.get_from_id(station_id)
                city.inter_city_stations.append(station)
            if domain_super_areas is None or city_super_area in domain_super_areas:
                city_super_area_instance = world.super_areas.get_from_id(
                    city_super_area
                )
                city.super_area = city_super_area_instance
                city_super_area_instance.city = city
        # super areas info
        geography = f["geography"]
        n_super_areas = geography.attrs["n_super_areas"]
        n_chunks = int(np.ceil(n_super_areas / chunk_size))
        for chunk in range(n_chunks):
            idx1 = chunk * chunk_size
            idx2 = min((chunk + 1) * chunk_size, n_super_areas)
            length = idx2 - idx1
            super_area_ids = read_dataset(geography["super_area_id"], idx1, idx2)
            super_area_city = read_dataset(geography["super_area_city"], idx1, idx2)
            super_area_closest_stations_cities = read_dataset(
                geography["super_area_closest_stations_cities"], idx1, idx2
            )
            super_area_closest_stations_stations = read_dataset(
                geography["super_area_closest_stations_stations"], idx1, idx2
            )
            # load closest station
            for k in range(length):
                super_area_id = super_area_ids[k]
                if domain_super_areas is not None:
                    if super_area_id == nan_integer:
                        raise ValueError(
                            "if ``domain_super_areas`` is True, I expect not Nones super areas."
                        )
                    if super_area_id not in domain_super_areas:
                        continue
                super_area = world.super_areas.get_from_id(super_area_id)
                if super_area_city[k] == nan_integer:
                    super_area.city = None
                else:
                    super_area.city = world.cities.get_from_id(super_area_city[k])
                for city, station in zip(
                    super_area_closest_stations_cities[k],
                    super_area_closest_stations_stations[k],
                ):
                    super_area.closest_inter_city_station_for_city[
                        city.decode()
                    ] = world.stations.get_from_id(station)

save_cities_to_hdf5(cities, file_path)

Parameters:

Name Type Description Default
cities Cities
required
file_path str
required
Source code in june/hdf5_savers/commute_saver.py
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
def save_cities_to_hdf5(cities: Cities, file_path: str):
    """

    Args:
        cities (Cities): 
        file_path (str): 

    """
    n_cities = len(cities)
    with h5py.File(file_path, "a") as f:
        cities_dset = f.create_group("cities")
        ids = []
        city_super_area_list = []
        super_areas_list = []
        super_areas_list_lengths = []
        names = []
        internal_commuters_list = []
        internal_commuters_list_lengths = []
        city_stations_id_list = []
        city_station_ids_lengths = []
        inter_city_stations_id_list = []
        inter_city_station_ids_lengths = []
        coordinates = []
        for city in cities:
            ids.append(city.id)
            names.append(city.name.encode("ascii", "ignore"))
            internal_commuters = [
                person_id for person_id in list(city.internal_commuter_ids)
            ]
            internal_commuters_list.append(np.array(internal_commuters, dtype=np.int64))
            internal_commuters_list_lengths.append(len(internal_commuters))
            super_areas = np.array(
                [
                    super_area.encode("ascii", "ignore")
                    for super_area in city.super_areas
                ],
                dtype="S20",
            )
            super_areas_list.append(super_areas)
            super_areas_list_lengths.append(len(super_areas))
            coordinates.append(np.array(city.coordinates, dtype=np.float64))
            if city.super_area is None:
                city_super_area_list.append(nan_integer)
            else:
                city_super_area_list.append(city.super_area.id)
            # stations
            city_stations_ids = np.array(
                [station.id for station in city.city_stations], dtype=np.int64
            )
            inter_city_stations_ids = np.array(
                [station.id for station in city.inter_city_stations], dtype=np.int64
            )
            city_station_ids_lengths.append(len(city_stations_ids))
            inter_city_station_ids_lengths.append(len(inter_city_stations_ids))
            city_stations_id_list.append(city_stations_ids)
            inter_city_stations_id_list.append(inter_city_stations_ids)

        ids = np.array(ids, dtype=np.int64)
        names = np.array(names, dtype="S30")
        if len(np.unique(super_areas_list_lengths)) == 1:
            super_areas_list = np.array(super_areas_list, dtype="S15")
        else:
            super_areas_list = np.array(super_areas_list, dtype=string_15_vlen_type)
        if len(np.unique(city_station_ids_lengths)) == 1:
            city_stations_id_list = np.array(city_stations_id_list, dtype=np.int64)
        else:
            city_stations_id_list = np.array(city_stations_id_list, dtype=int_vlen_type)
        if len(np.unique(city_station_ids_lengths)) == 1:
            inter_city_stations_id_list = np.array(
                inter_city_stations_id_list, dtype=np.int64
            )
        else:
            inter_city_stations_id_list = np.array(
                inter_city_stations_id_list, dtype=int_vlen_type
            )
        if len(np.unique(internal_commuters_list_lengths)) == 1:
            internal_commuters_list = np.array(internal_commuters_list, dtype=np.int64)
        else:
            internal_commuters_list = np.array(
                internal_commuters_list, dtype=int_vlen_type
            )
        city_super_area_list = np.array(city_super_area_list, dtype=np.int64)

        cities_dset.attrs["n_cities"] = n_cities
        cities_dset.create_dataset("id", data=ids)
        cities_dset.create_dataset("name", data=names)
        try:
            coords_array = np.array(coordinates)
            cities_dset.create_dataset("coordinates", data=coords_array)
        except Exception as e:
            raise
        cities_dset.create_dataset("super_areas", data=super_areas_list)
        cities_dset.create_dataset("city_super_area", data=city_super_area_list)
        cities_dset.create_dataset("internal_commuters", data=internal_commuters_list)
        # stations
        cities_dset.create_dataset("city_station_id", data=city_stations_id_list)
        cities_dset.create_dataset(
            "inter_city_station_id", data=inter_city_stations_id_list
        )

save_stations_to_hdf5(stations, file_path)

Parameters:

Name Type Description Default
stations Stations
required
file_path str
required
Source code in june/hdf5_savers/commute_saver.py
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
def save_stations_to_hdf5(stations: Stations, file_path: str):
    """

    Args:
        stations (Stations): 
        file_path (str): 

    """
    n_stations = len(stations)
    with h5py.File(file_path, "a") as f:
        stations_dset = f.create_group("stations")
        stations_dset.attrs["n_stations"] = n_stations
        station_ids = []
        station_cities = []
        station_types = []
        station_super_areas = []
        station_commuters = []
        station_transport_ids_list = []
        station_transport_ids_list_lengths = []
        for station in stations:
            if isinstance(station, CityStation):
                station_types.append("city".encode("ascii", "ignore"))
            else:
                station_types.append("inter".encode("ascii", "ignore"))
            station_ids.append(station.id)
            station_super_areas.append(station.super_area.id)
            station_commuters.append(
                np.array(
                    [person_id for person_id in list(station.commuter_ids)],
                    dtype=np.int64,
                )
            )
            if isinstance(station, CityStation):
                station_transport_ids = [
                    transport.id for transport in station.city_transports
                ]
            else:
                station_transport_ids = [
                    transport.id for transport in station.inter_city_transports
                ]
            station_transport_ids_list.append(
                np.array(station_transport_ids, dtype=np.int64)
            )
            station_transport_ids_list_lengths.append(len(station_transport_ids))
            station_cities.append(station.city.encode("ascii", "ignore"))
        station_ids = np.array(station_ids, dtype=np.int64)
        station_super_areas = np.array(station_super_areas, dtype=np.int64)
        station_commuters = np.array(station_commuters, dtype=int_vlen_type)
        station_cities = np.array(station_cities, dtype="S30")
        station_types = np.array(station_types, dtype="S10")
        if len(np.unique(station_transport_ids_list_lengths)) == 1:
            station_transport_ids_list = np.array(
                station_transport_ids_list, dtype=np.int64
            )
        else:
            station_transport_ids_list = np.array(
                station_transport_ids_list, dtype=int_vlen_type
            )
        stations_dset.create_dataset("id", data=station_ids)
        stations_dset.create_dataset("super_area", data=station_super_areas)
        stations_dset.create_dataset("commuters", data=station_commuters)
        stations_dset.create_dataset("transport_ids", data=station_transport_ids_list)
        stations_dset.create_dataset("station_cities", data=station_cities)
        stations_dset.create_dataset("type", data=station_types)