Skip to content

Geography saver

load_geography_from_hdf5(file_path, chunk_size=50000, domain_super_areas=None)

Loads geography from an hdf5 file located at file_path. Note that this object will not be ready to use, as the links to object instances of other classes need to be restored first. This function should be rarely be called oustide world.py

Parameters:

Name Type Description Default
file_path str
required
chunk_size

(Default value = 50000)

50000
domain_super_areas

(Default value = None)

None
Source code in june/hdf5_savers/geography_saver.py
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
def load_geography_from_hdf5(file_path: str, chunk_size=50000, domain_super_areas=None):
    """Loads geography from an hdf5 file located at ``file_path``.
    Note that this object will not be ready to use, as the links to
    object instances of other classes need to be restored first.
    This function should be rarely be called oustide world.py

    Args:
        file_path (str): 
        chunk_size: (Default value = 50000)
        domain_super_areas: (Default value = None)

    """
    with h5py.File(file_path, "r", libver="latest", swmr=True) as f:
        geography = f["geography"]
        n_areas = geography.attrs["n_areas"]
        area_list = []
        n_super_areas = geography.attrs["n_super_areas"]
        n_regions = geography.attrs["n_regions"]
        # areas
        n_chunks = int(np.ceil(n_areas / chunk_size))
        for chunk in range(n_chunks):
            idx1 = chunk * chunk_size
            idx2 = min((chunk + 1) * chunk_size, n_areas)
            length = idx2 - idx1
            area_ids = read_dataset(geography["area_id"], index1=idx1, index2=idx2)
            area_names = read_dataset(geography["area_name"], index1=idx1, index2=idx2)
            area_coordinates = read_dataset(geography["area_coordinates"], idx1, idx2)
            area_socioeconomic_indices = read_dataset(
                geography["area_socioeconomic_indices"], idx1, idx2
            )
            area_super_areas = read_dataset(geography["area_super_area"], idx1, idx2)
            for k in range(length):
                if domain_super_areas is not None:
                    super_area = area_super_areas[k]
                    if super_area == nan_integer:
                        raise ValueError(
                            "if ``domain_super_areas`` is True, I expect not Nones super areas."
                        )
                    if super_area not in domain_super_areas:
                        continue
                area = Area(
                    name=area_names[k].decode(),
                    super_area=None,
                    coordinates=area_coordinates[k],
                    socioeconomic_index=area_socioeconomic_indices[k],
                )
                area.id = area_ids[k]
                area_list.append(area)
        # super areas
        super_area_list = []
        domain_regions = set()
        n_chunks = int(np.ceil(n_super_areas / chunk_size))
        for chunk in range(n_chunks):
            idx1 = chunk * chunk_size
            idx2 = min((chunk + 1) * chunk_size, n_super_areas)
            length = idx2 - idx1
            super_area_ids = read_dataset(geography["super_area_id"], idx1, idx2)
            super_area_names = read_dataset(geography["super_area_name"], idx1, idx2)
            super_area_regions = read_dataset(
                geography["super_area_region"], idx1, idx2
            )
            super_area_coordinates = read_dataset(
                geography["super_area_coordinates"], idx1, idx2
            )
            for k in range(idx2 - idx1):
                if domain_super_areas is not None:
                    super_area_id = super_area_ids[k]
                    if super_area_id == nan_integer:
                        raise ValueError(
                            "if ``domain_super_areas`` is True, I expect not Nones super areas."
                        )
                    if super_area_id not in domain_super_areas:
                        continue
                super_area = SuperArea(
                    name=super_area_names[k].decode(),
                    areas=None,
                    coordinates=super_area_coordinates[k],
                )
                super_area.id = super_area_ids[k]
                super_area_list.append(super_area)
                domain_regions.add(super_area_regions[k])
        # regions
        region_list = []
        n_chunks = int(np.ceil(n_regions / chunk_size))
        for chunk in range(n_chunks):
            idx1 = chunk * chunk_size
            idx2 = min((chunk + 1) * chunk_size, n_regions)
            length = idx2 - idx1
            region_ids = read_dataset(geography["region_id"], idx1, idx2)
            region_names = read_dataset(geography["region_name"], idx1, idx2)
            for k in range(idx2 - idx1):
                if domain_super_areas is not None:
                    region_id = region_ids[k]
                    if region_id == nan_integer:
                        raise ValueError(
                            "if ``domain_super_areas`` is True, I expect not Nones regions."
                        )
                    if region_id not in domain_regions:
                        continue
                region = Region(name=region_names[k].decode(), super_areas=None)
                region.id = region_ids[k]
                region_list.append(region)

    areas = Areas(area_list)
    super_areas = SuperAreas(super_area_list)
    regions = Regions(region_list)
    return Geography(areas, super_areas, regions)

restore_geography_properties_from_hdf5(world, file_path, chunk_size, domain_super_areas=None, super_areas_to_domain_dict=None, super_areas_to_region_dict=None)

Long function to restore geographic attributes to the world's geography. The closest hospitals, commuting cities, stations, and social venues are restored to areas and super areas. For the cases that the super areas would be outside the simulated domain, the instances of cities,stations, etc. are substituted by external groups, which point to the domain where they are at.

Parameters:

Name Type Description Default
world World
required
file_path str
required
chunk_size
required
domain_super_areas

(Default value = None)

None
super_areas_to_domain_dict dict

(Default value = None)

None
super_areas_to_region_dict dict

(Default value = None)

None
Source code in june/hdf5_savers/geography_saver.py
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
def restore_geography_properties_from_hdf5(
    world: World,
    file_path: str,
    chunk_size,
    domain_super_areas=None,
    super_areas_to_domain_dict: dict = None,
    super_areas_to_region_dict: dict = None,
):
    """Long function to restore geographic attributes to the world's geography.
    The closest hospitals, commuting cities, stations, and social venues are restored
    to areas and super areas. For the cases that the super areas would be outside the
    simulated domain, the instances of cities,stations, etc. are substituted by
    external groups, which point to the domain where they are at.

    Args:
        world (World): 
        file_path (str): 
        chunk_size: 
        domain_super_areas: (Default value = None)
        super_areas_to_domain_dict (dict, optional): (Default value = None)
        super_areas_to_region_dict (dict, optional): (Default value = None)

    """
    with h5py.File(file_path, "r", libver="latest", swmr=True) as f:
        geography = f["geography"]
        n_areas = geography.attrs["n_areas"]
        n_chunks = int(np.ceil(n_areas / chunk_size))
        # areas
        for chunk in range(n_chunks):
            idx1 = chunk * chunk_size
            idx2 = min((chunk + 1) * chunk_size, n_areas)
            length = idx2 - idx1
            areas_ids = read_dataset(geography["area_id"], idx1, idx2)
            super_areas = read_dataset(geography["area_super_area"], idx1, idx2)
            if "social_venues_specs" in geography and "social_venues_ids" in geography:
                social_venues_specs = read_dataset(
                    geography["social_venues_specs"], idx1, idx2
                )
                social_venues_ids = read_dataset(
                    geography["social_venues_ids"], idx1, idx2
                )
                # TODO:
                social_venues_super_areas = read_dataset(
                    geography["social_venues_super_areas"], idx1, idx2
                )
            for k in range(length):
                if domain_super_areas is not None:
                    super_area_id = super_areas[k]
                    if super_area_id == nan_integer:
                        raise ValueError(
                            "if ``domain_super_areas`` is True, I expect not Nones super areas."
                        )
                    if super_area_id not in domain_super_areas:
                        continue
                super_area = world.super_areas.get_from_id(super_areas[k])
                area = world.areas.get_from_id(areas_ids[k])
                area.super_area = super_area
                area.super_area.areas.append(area)
                # social venues
                area.social_venues = defaultdict(tuple)
                if (
                    "social_venues_specs" in geography
                    and "social_venues_ids" in geography
                ):
                    for group_spec, group_id, group_super_area in zip(
                        social_venues_specs[k],
                        social_venues_ids[k],
                        social_venues_super_areas[k],
                    ):
                        spec = group_spec.decode()
                        spec_mapped = spec_to_supergroup_mapper[spec]
                        supergroup = getattr(world, spec_mapped)
                        if (
                            domain_super_areas is not None
                            and group_super_area not in domain_super_areas
                        ):

                            domain_of_group = super_areas_to_domain_dict[
                                group_super_area
                            ]
                            # Get region name from global mapping
                            region_name = super_areas_to_region_dict.get(group_super_area) if super_areas_to_region_dict else None
                            group = ExternalGroup(
                                id=group_id, domain_id=domain_of_group, spec=spec, region_name=region_name
                            )
                        else:
                            group = supergroup.get_from_id(group_id)
                        area.social_venues[spec] = (*area.social_venues[spec], group)
        n_super_areas = geography.attrs["n_super_areas"]
        n_chunks = int(np.ceil(n_super_areas / chunk_size))
        # areas
        for chunk in range(n_chunks):
            idx1 = chunk * chunk_size
            idx2 = min((chunk + 1) * chunk_size, n_super_areas)
            length = idx2 - idx1
            super_area_ids = read_dataset(
                geography["super_area_id"], index1=idx1, index2=idx2
            )
            regions = read_dataset(
                geography["super_area_region"], index1=idx1, index2=idx2
            )
            for k in range(length):
                if domain_super_areas is not None:
                    super_area_id = super_area_ids[k]
                    if super_area_id == nan_integer:
                        raise ValueError(
                            "if ``domain_super_areas`` is True, I expect not Nones super areas."
                        )
                    if super_area_id not in domain_super_areas:
                        continue
                super_area = world.super_areas.get_from_id(super_area_ids[k])
                region = world.regions.get_from_id(regions[k])
                super_area.region = region
                region.super_areas.append(super_area)

save_geography_to_hdf5(geography, file_path)

Saves the households object to hdf5 format file file_path. Currently for each person, the following values are stored: - id, n_beds, n_icu_beds, super_area, coordinates

Parameters:

Name Type Description Default
geography Geography
required
file_path str

path of the saved hdf5 file

required
Source code in june/hdf5_savers/geography_saver.py
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
def save_geography_to_hdf5(geography: Geography, file_path: str):
    """Saves the households object to hdf5 format file ``file_path``. Currently for each person,
    the following values are stored:
    - id, n_beds, n_icu_beds, super_area, coordinates

    Args:
        geography (Geography): 
        file_path (str): path of the saved hdf5 file

    """
    n_areas = len(geography.areas)
    area_ids = []
    area_names = []
    area_super_areas = []
    area_coordinates = []
    area_socioeconomic_indices = []
    n_super_areas = len(geography.super_areas)
    super_area_ids = []
    super_area_names = []
    super_area_coordinates = []
    super_area_regions = []
    closest_hospitals_ids = []
    closest_hospitals_super_areas = []
    hospital_lengths = []
    social_venues_specs_list = []
    social_venues_ids_list = []
    social_venues_super_areas = []
    social_venues_lengths = []
    super_area_city = []
    super_area_closest_stations_cities = []
    super_area_closest_stations_stations = []
    super_area_closest_stations_lengths = []
    super_area_n_people = []
    super_area_n_workers = []
    super_area_n_pupils = []
    n_regions = len(geography.regions)
    region_ids = []
    region_names = []

    for area in geography.areas:
        area_ids.append(area.id)
        area_super_areas.append(area.super_area.id)
        area_names.append(area.name.encode("ascii", "ignore"))
        area_coordinates.append(np.array(area.coordinates, dtype=np.float64))
        area_socioeconomic_indices.append(area.socioeconomic_index)
        social_venues_ids = []
        social_venues_specs = []
        social_venues_sas = []
        for spec in area.social_venues.keys():
            for social_venue in area.social_venues[spec]:
                social_venues_specs.append(spec.encode("ascii", "ignore"))
                social_venues_ids.append(social_venue.id)
                social_venues_sas.append(social_venue.super_area.id)
        social_venues_specs_list.append(np.array(social_venues_specs, dtype="S20"))
        social_venues_ids_list.append(np.array(social_venues_ids, dtype=np.int64))
        social_venues_super_areas.append(np.array(social_venues_sas, dtype=np.int64))
        social_venues_lengths.append(len(social_venues_specs))
    if len(np.unique(social_venues_lengths)) == 1:
        social_venues_specs_list = np.array(social_venues_specs_list, dtype="S20")
        social_venues_ids_list = np.array(social_venues_ids_list, dtype=np.int64)
        social_venues_super_areas = np.array(social_venues_super_areas, dtype=np.int64)
    else:
        social_venues_specs_list = np.array(
            social_venues_specs_list, dtype=str_vlen_type
        )
        social_venues_ids_list = np.array(social_venues_ids_list, dtype=int_vlen_type)
        social_venues_super_areas = np.array(
            social_venues_super_areas, dtype=int_vlen_type
        )

    for super_area in geography.super_areas:
        super_area_ids.append(super_area.id)
        super_area_names.append(super_area.name.encode("ascii", "ignore"))
        super_area_regions.append(super_area.region.id)
        super_area_coordinates.append(np.array(super_area.coordinates))
        super_area_n_people.append(len(super_area.people))
        super_area_n_workers.append(len(super_area.workers))
        super_area_n_pupils.append(
            sum(
                [
                    len(school.people)
                    for area in super_area.areas
                    for school in area.schools
                ]
            )
        )
        if super_area.closest_hospitals is None:
            closest_hospitals_ids.append(np.array([nan_integer], dtype=np.int64))
            closest_hospitals_super_areas.append(
                np.array([nan_integer], dtype=np.int64)
            )
            hospital_lengths.append(1)
        else:
            hospital_ids = np.array(
                [hospital.id for hospital in super_area.closest_hospitals],
                dtype=np.int64,
            )
            hospital_sas = np.array(
                [hospital.super_area.id for hospital in super_area.closest_hospitals],
                dtype=np.int64,
            )
            closest_hospitals_ids.append(hospital_ids)
            closest_hospitals_super_areas.append(hospital_sas)
            hospital_lengths.append(len(hospital_ids))
        if super_area.city is None:
            super_area_city.append(nan_integer)
        else:
            super_area_city.append(super_area.city.id)

        for region in geography.regions:
            region_ids.append(region.id)
            region_names.append(region.name)
        cities = []
        stations = []
        for key, value in super_area.closest_inter_city_station_for_city.items():
            cities.append(key.encode("ascii", "ignore"))
            stations.append(value.id)
        super_area_closest_stations_cities.append(cities)
        super_area_closest_stations_stations.append(stations)
        super_area_closest_stations_lengths.append(
            len(super_area.closest_inter_city_station_for_city)
        )

    area_ids = np.array(area_ids, dtype=np.int64)
    area_names = np.array(area_names, dtype="S20")
    area_super_areas = np.array(area_super_areas, dtype=np.int64)
    area_coordinates = np.array(area_coordinates, dtype=np.float64)
    area_socioeconomic_indices = np.array(area_socioeconomic_indices, dtype=np.float64)
    super_area_ids = np.array(super_area_ids, dtype=np.int64)
    super_area_names = np.array(super_area_names, dtype="S20")
    super_area_coordinates = np.array(super_area_coordinates, dtype=np.float64)
    super_area_regions = np.array(super_area_regions, dtype=np.int64)
    super_area_n_people = np.array(super_area_n_people, dtype=np.int64)
    super_area_n_workers = np.array(super_area_n_workers, dtype=np.int64)
    super_area_n_pupils = np.array(super_area_n_pupils, dtype=np.int64)
    region_ids = np.array(region_ids, dtype=np.int64)
    region_names = np.array(region_names, dtype="S50")
    if len(np.unique(hospital_lengths)) == 1:
        closest_hospitals_ids = np.array(closest_hospitals_ids, dtype=np.int64)
        closest_hospitals_super_areas = np.array(
            closest_hospitals_super_areas, dtype=np.int64
        )
    else:
        closest_hospitals_ids = np.array(closest_hospitals_ids, dtype=int_vlen_type)
        closest_hospitals_super_areas = np.array(
            closest_hospitals_super_areas, dtype=int_vlen_type
        )
    super_area_city = np.array(super_area_city, dtype=np.int64)
    if len(np.unique(super_area_closest_stations_lengths)) == 1:
        super_area_closest_stations_cities = np.array(
            super_area_closest_stations_cities, dtype="S40"
        )
        super_area_closest_stations_stations = np.array(
            super_area_closest_stations_stations, dtype=np.int64
        )
    else:
        super_area_closest_stations_cities = np.array(
            super_area_closest_stations_cities, dtype=str_vlen_type
        )
        super_area_closest_stations_stations = np.array(
            super_area_closest_stations_stations, dtype=int_vlen_type
        )

    with h5py.File(file_path, "a") as f:
        geography_dset = f.create_group("geography")
        geography_dset.attrs["n_areas"] = n_areas
        geography_dset.attrs["n_super_areas"] = n_super_areas
        geography_dset.attrs["n_regions"] = n_regions
        geography_dset.create_dataset("area_id", data=area_ids)
        geography_dset.create_dataset("area_name", data=area_names)
        geography_dset.create_dataset("area_super_area", data=area_super_areas)
        try:
            coords_array = np.array(area_coordinates)
            geography_dset.create_dataset("area_coordinates", data=coords_array)
        except Exception as e:
            raise
        geography_dset.create_dataset(
            "area_socioeconomic_indices", data=area_socioeconomic_indices
        )
        geography_dset.create_dataset("super_area_id", data=super_area_ids)
        geography_dset.create_dataset("super_area_name", data=super_area_names)
        geography_dset.create_dataset("super_area_region", data=super_area_regions)
        geography_dset.create_dataset("super_area_city", data=super_area_city)
        geography_dset.create_dataset("super_area_n_people", data=super_area_n_people)
        geography_dset.create_dataset("super_area_n_workers", data=super_area_n_workers)
        geography_dset.create_dataset("super_area_n_pupils", data=super_area_n_pupils)
        geography_dset.create_dataset(
            "super_area_closest_stations_cities",
            data=super_area_closest_stations_cities,
        )
        geography_dset.create_dataset(
            "super_area_closest_stations_stations",
            data=super_area_closest_stations_stations,
        )
        geography_dset.create_dataset(
            "super_area_coordinates", data=super_area_coordinates
        )
        geography_dset.create_dataset(
            "closest_hospitals_ids", data=closest_hospitals_ids
        )
        geography_dset.create_dataset(
            "closest_hospitals_super_areas", data=closest_hospitals_super_areas
        )
        geography_dset.create_dataset("region_id", data=region_ids)
        geography_dset.create_dataset("region_name", data=region_names)
        if social_venues_specs and social_venues_ids:
            geography_dset.create_dataset(
                "social_venues_specs", data=social_venues_specs_list
            )
            geography_dset.create_dataset(
                "social_venues_ids", data=social_venues_ids_list
            )
            geography_dset.create_dataset(
                "social_venues_super_areas", data=social_venues_super_areas
            )