Skip to content

Leisure saver

load_social_venues_from_hdf5(file_path, domain_areas=None, config_filename=None)

Parameters:

Name Type Description Default
file_path str
required
domain_areas

(Default value = None)

None
config_filename

(Default value = None)

None
Source code in june/hdf5_savers/leisure_saver.py
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
def load_social_venues_from_hdf5(
    file_path: str, domain_areas=None, config_filename=None
):
    """

    Args:
        file_path (str): 
        domain_areas: (Default value = None)
        config_filename: (Default value = None)

    """
    social_venues_dict = {}

    disease_config = GlobalContext.get_disease_config()

    Pub_Class = Pub
    Pub_Class.subgroup_params = SubgroupParams.from_disease_config(disease_config)

    Cinema_Class = Cinema
    Cinema_Class.subgroup_params = SubgroupParams.from_disease_config(disease_config)

    Grocery_Class = Grocery
    Grocery_Class.subgroup_params = SubgroupParams.from_disease_config(disease_config)

    Gym_Class = Gym
    Gym_Class.subgroup_params = SubgroupParams.from_disease_config(disease_config)

    spec_to_group_dict = {
        "pubs": Pub_Class,
        "cinemas": Cinema_Class,
        "groceries": Grocery_Class,
        "gyms": Gym_Class,
    }
    spec_to_supergroup_dict = {
        "pubs": Pubs,
        "cinemas": Cinemas,
        "groceries": Groceries,
        "gyms": Gyms,
    }

    with h5py.File(file_path, "r", libver="latest", swmr=True) as f:
        for spec in f["social_venues"]:
            data = f["social_venues"][spec]
            social_venues = []
            n = data.attrs["n"]
            if n == 0:
                social_venues_dict[spec] = None
                continue
            ids = read_dataset(data["id"])
            coordinates = read_dataset(data["coordinates"])
            areas = read_dataset(data["area"])
            for k in range(n):
                if domain_areas is not None:
                    area = areas[k]
                    if area == nan_integer:
                        raise ValueError(
                            "if ``domain_areas`` is True, I expect not Nones super areas."
                        )
                    if area not in domain_areas:
                        continue
                social_venue = spec_to_group_dict[spec]()
                social_venue.id = ids[k]
                social_venue.coordinates = coordinates[k]
                social_venues.append(social_venue)
            social_venues_dict[spec] = spec_to_supergroup_dict[spec](social_venues)
        return social_venues_dict

restore_social_venues_properties_from_hdf5(world, file_path, domain_areas=None)

Parameters:

Name Type Description Default
world World
required
file_path str
required
domain_areas

(Default value = None)

None
Source code in june/hdf5_savers/leisure_saver.py
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
def restore_social_venues_properties_from_hdf5(
    world: World, file_path: str, domain_areas=None
):
    """

    Args:
        world (World): 
        file_path (str): 
        domain_areas: (Default value = None)

    """
    with h5py.File(file_path, "r", libver="latest", swmr=True) as f:
        for spec in f["social_venues"]:
            data = f["social_venues"][spec]
            n = data.attrs["n"]
            if n == 0:
                continue
            social_venues = getattr(world, spec)
            ids = read_dataset(data["id"])
            areas = read_dataset(data["area"])
            for k in range(n):
                if domain_areas is not None:
                    area = areas[k]
                    if area == nan_integer:
                        raise ValueError(
                            "if ``domain_areas`` is True, I expect not Nones super areas."
                        )
                    if area not in domain_areas:
                        continue
                social_venue = social_venues.get_from_id(ids[k])
                area = areas[k]
                if area == nan_integer:
                    area = None
                else:
                    area = world.areas.get_from_id(area)
                social_venue.area = area

save_social_venues_to_hdf5(social_venues_list, file_path)

Parameters:

Name Type Description Default
social_venues_list List[SocialVenues]
required
file_path str
required
Source code in june/hdf5_savers/leisure_saver.py
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
def save_social_venues_to_hdf5(social_venues_list: List[SocialVenues], file_path: str):
    """

    Args:
        social_venues_list (List[SocialVenues]): 
        file_path (str): 

    """
    with h5py.File(file_path, "a") as f:
        f.create_group("social_venues")
        for social_venues in social_venues_list:
            n_svs = len(social_venues)
            social_venues_dset = f["social_venues"].create_group(social_venues.spec)
            ids = []
            coordinates = []
            areas = []
            for sv in social_venues:
                ids.append(sv.id)
                coordinates.append(np.array(sv.coordinates, dtype=np.float64))
                if sv.super_area is None:
                    areas.append(nan_integer)
                else:
                    areas.append(sv.area.id)
            ids = np.array(ids, dtype=np.int64)
            coordinates = np.array(coordinates, dtype=np.float64)
            areas = np.array(areas, dtype=np.int64)
            social_venues_dset.attrs["n"] = n_svs
            social_venues_dset.create_dataset("id", data=ids)
            social_venues_dset.create_dataset("coordinates", data=coordinates)
            social_venues_dset.create_dataset("area", data=areas)