Skip to content

University saver

load_universities_from_hdf5(file_path, chunk_size=50000, domain_areas=None, config_filename=None)

Loads universities from an hdf5 file located at file_path. Note that this object will not be ready to use, as the links to object instances of other classes need to be restored first. This function should be rarely be called oustide world.py

Parameters:

Name Type Description Default
file_path str
required
chunk_size int

(Default value = 50000)

50000
domain_areas

(Default value = None)

None
config_filename

(Default value = None)

None
Source code in june/hdf5_savers/university_saver.py
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
def load_universities_from_hdf5(
    file_path: str, chunk_size: int = 50000, domain_areas=None, config_filename=None
):
    """Loads universities from an hdf5 file located at ``file_path``.
    Note that this object will not be ready to use, as the links to
    object instances of other classes need to be restored first.
    This function should be rarely be called oustide world.py

    Args:
        file_path (str): 
        chunk_size (int, optional): (Default value = 50000)
        domain_areas: (Default value = None)
        config_filename: (Default value = None)

    """

    University_Class = University
    disease_config = GlobalContext.get_disease_config()
    University_Class.subgroup_params = SubgroupParams.from_disease_config(disease_config)

    with h5py.File(file_path, "r", libver="latest", swmr=True) as f:
        universities = f["universities"]
        universities_list = []
        n_universities = universities.attrs["n_universities"]
        ids = read_dataset(universities["id"])
        n_students_max = read_dataset(universities["n_students_max"])
        n_years = read_dataset(universities["n_years"])
        ukprns = read_dataset(universities["ukprns"])
        areas = read_dataset(universities["area"])
        coordinates = read_dataset(universities["coordinates"])

        # Check if registered members data exists
        has_subgroup_data = "registered_members_subgroups" in universities
        subgroup_counts = {}
        subgroup_members = {}
        subgroup_cumulative_counts = {}

        if has_subgroup_data:
            # Get all subgroups
            subgroups = read_dataset(universities["registered_members_subgroups"], 0, universities["registered_members_subgroups"].shape[0])

            # For each subgroup, prepare the count and flattened arrays
            for subgroup_id in subgroups:
                sg_key = f"registered_members_count_sg{subgroup_id}"
                ids_key = f"registered_members_ids_sg{subgroup_id}"

                if sg_key in universities and ids_key in universities:
                    # Read counts for this subgroup
                    counts = read_dataset(universities[sg_key], 0, n_universities)
                    subgroup_counts[subgroup_id] = counts

                    # Calculate cumulative counts for this subgroup
                    cumulative = np.concatenate(([0], np.cumsum(counts)))
                    subgroup_cumulative_counts[subgroup_id] = cumulative

                    # Read flattened member IDs for this subgroup
                    if universities[ids_key].shape[0] > 0:
                        member_ids = read_dataset(universities[ids_key], 0, universities[ids_key].shape[0])
                        subgroup_members[subgroup_id] = member_ids
                    else:
                        subgroup_members[subgroup_id] = np.array([])
        for k in range(n_universities):
            if domain_areas is not None:
                area = areas[k]
                if area == nan_integer:
                    raise ValueError(
                        "if ``domain_areas`` is True, I expect not Nones areas."
                    )
                if area not in domain_areas:
                    continue

            # Get registered_members_ids for this university if available
            registered_members_dict = {}

            if has_subgroup_data and subgroups.size > 0:
                university_index = k

                # Get members for each subgroup
                for subgroup_id in subgroups:
                    if subgroup_id in subgroup_counts and subgroup_id in subgroup_members:
                        n_members = subgroup_counts[subgroup_id][university_index]

                        if n_members > 0 and len(subgroup_members[subgroup_id]) > 0:
                            start_idx = subgroup_cumulative_counts[subgroup_id][university_index]
                            end_idx = subgroup_cumulative_counts[subgroup_id][university_index + 1]

                            if start_idx < len(subgroup_members[subgroup_id]):
                                registered_members_dict[int(subgroup_id)] = subgroup_members[subgroup_id][start_idx:end_idx].tolist()

            university = University_Class(
                n_students_max=n_students_max[k],
                n_years=n_years[k],
                ukprn=ukprns[k],
                coordinates=coordinates[k],
                registered_members_ids=registered_members_dict,
            )
            university.id = ids[k]
            universities_list.append(university)
    return Universities(universities_list)

restore_universities_properties_from_hdf5(world, file_path, chunk_size=50000, domain_areas=None)

Parameters:

Name Type Description Default
world
required
file_path str
required
chunk_size int

(Default value = 50000)

50000
domain_areas

(Default value = None)

None
Source code in june/hdf5_savers/university_saver.py
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
def restore_universities_properties_from_hdf5(
    world, file_path: str, chunk_size: int = 50000, domain_areas=None
):
    """

    Args:
        world: 
        file_path (str): 
        chunk_size (int, optional): (Default value = 50000)
        domain_areas: (Default value = None)

    """
    with h5py.File(file_path, "r", libver="latest", swmr=True) as f:
        universities = f["universities"]
        n_universities = universities.attrs["n_universities"]

        # Check if registered members data exists
        has_subgroup_data = "registered_members_subgroups" in universities
        subgroup_counts = {}
        subgroup_members = {}
        subgroup_cumulative_counts = {}

        if has_subgroup_data:
            # Get all subgroups
            subgroups = read_dataset(universities["registered_members_subgroups"], 0, universities["registered_members_subgroups"].shape[0])

            # For each subgroup, prepare the count and flattened arrays
            for subgroup_id in subgroups:
                sg_key = f"registered_members_count_sg{subgroup_id}"
                ids_key = f"registered_members_ids_sg{subgroup_id}"

                if sg_key in universities and ids_key in universities:
                    # Read counts for this subgroup
                    counts = read_dataset(universities[sg_key], 0, n_universities)
                    subgroup_counts[subgroup_id] = counts

                    # Calculate cumulative counts for this subgroup
                    cumulative = np.concatenate(([0], np.cumsum(counts)))
                    subgroup_cumulative_counts[subgroup_id] = cumulative

                    # Read flattened member IDs for this subgroup
                    if universities[ids_key].shape[0] > 0:
                        member_ids = read_dataset(universities[ids_key], 0, universities[ids_key].shape[0])
                        subgroup_members[subgroup_id] = member_ids
                    else:
                        subgroup_members[subgroup_id] = np.array([])

        ids = np.empty(n_universities, dtype=int)
        universities["id"].read_direct(
            ids, np.s_[0:n_universities], np.s_[0:n_universities]
        )
        areas = np.empty(n_universities, dtype=int)
        universities["area"].read_direct(
            areas, np.s_[0:n_universities], np.s_[0:n_universities]
        )
        for k in range(n_universities):
            if domain_areas is not None:
                area = areas[k]
                if area == nan_integer:
                    raise ValueError(
                        "if ``domain_areas`` is True, I expect not Nones super areas."
                    )
                if area not in domain_areas:
                    continue
            university = world.universities.get_from_id(ids[k])
            area = areas[k]
            if area == nan_integer:
                area = None
            else:
                area = world.areas.get_from_id(area)
            university.area = area

            # Restore registered_members_ids if available
            if has_subgroup_data and subgroups.size > 0:
                university_index = k
                registered_members_dict = {}

                # Process each subgroup
                for subgroup_id in subgroups:
                    if subgroup_id in subgroup_counts and subgroup_id in subgroup_members:
                        n_members = subgroup_counts[subgroup_id][university_index]

                        if n_members > 0 and len(subgroup_members[subgroup_id]) > 0:
                            start_idx = subgroup_cumulative_counts[subgroup_id][university_index]
                            end_idx = subgroup_cumulative_counts[subgroup_id][university_index + 1]

                            if start_idx < len(subgroup_members[subgroup_id]):
                                registered_members_dict[int(subgroup_id)] = subgroup_members[subgroup_id][start_idx:end_idx].tolist()

                # Always use dictionary format
                university.registered_members_ids = registered_members_dict

save_universities_to_hdf5(universities, file_path)

Saves the universities object to hdf5 format file file_path. Currently for each person, the following values are stored: - id, n_pupils_max, age_min, age_max, sector

Parameters:

Name Type Description Default
universities Universities

population object

required
file_path str

path of the saved hdf5 file

required
Source code in june/hdf5_savers/university_saver.py
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
def save_universities_to_hdf5(universities: Universities, file_path: str):
    """Saves the universities object to hdf5 format file ``file_path``. Currently for each person,
    the following values are stored:
    - id, n_pupils_max,  age_min, age_max, sector

    Args:
        universities (Universities): population object
        file_path (str): path of the saved hdf5 file

    """
    n_universities = len(universities)
    with h5py.File(file_path, "a") as f:
        universities_dset = f.create_group("universities")
        ids = []
        n_students_max = []
        n_years = []
        ukprns = []
        areas = []
        coordinates = []
        registered_members_ids = []  # Add for storing registered_members_ids
        for university in universities:
            ids.append(university.id)
            n_students_max.append(university.n_students_max)
            n_years.append(university.n_years)
            coordinates.append(np.array(university.coordinates, dtype=np.float64))
            ukprns.append(university.ukprn)
            if university.area is None:
                areas.append(nan_integer)
            else:
                areas.append(university.area.id)

            # Process registered_members_ids
            university_registered_members = {}
            if hasattr(university, 'registered_members_ids') and university.registered_members_ids is not None:
                for subgroup_id, members in university.registered_members_ids.items():
                    university_registered_members[subgroup_id] = np.array(members, dtype=np.int64)
            registered_members_ids.append(university_registered_members)

        ids = np.array(ids, dtype=np.int64)
        n_students_max = np.array(n_students_max, dtype=np.int64)
        n_years = np.array(n_years, dtype=np.int64)
        ukprns = np.array(ukprns, dtype=np.int64)
        areas = np.array(areas, dtype=np.int64)
        coordinates = np.array(coordinates, dtype=np.float64)

        # Create datasets to store registered_members_ids
        # First, determine what subgroups exist across all universities
        all_subgroups = set()
        for uni_subgroups in registered_members_ids:
            all_subgroups.update(uni_subgroups.keys())
        all_subgroups = sorted(list(all_subgroups))  # Ensure consistent ordering

        # Store subgroup IDs as integers
        subgroup_ids = np.array(all_subgroups, dtype=np.int64)

        # Create counts and flattened arrays for each subgroup
        subgroup_counts = {}
        flattened_subgroup_members = {}

        for subgroup_id in all_subgroups:
            # Count of members in this subgroup for each university
            counts = np.array([len(uni_dict.get(subgroup_id, [])) for uni_dict in registered_members_ids], dtype=np.int64)
            subgroup_counts[subgroup_id] = counts

            # Flatten all member IDs for this subgroup
            member_arrays = [uni_dict.get(subgroup_id, np.array([], dtype=np.int64)) for uni_dict in registered_members_ids]
            flattened = np.concatenate(member_arrays) if any(len(arr) > 0 for arr in member_arrays) else np.array([], dtype=np.int64)
            flattened_subgroup_members[subgroup_id] = flattened
        universities_dset.attrs["n_universities"] = n_universities
        universities_dset.create_dataset("id", data=ids)
        universities_dset.create_dataset("n_students_max", data=n_students_max)
        universities_dset.create_dataset("n_years", data=n_years)
        universities_dset.create_dataset("area", data=areas)
        try:
            coords_array = np.array(coordinates)
            universities_dset.create_dataset("coordinates", data=coords_array)
        except Exception as e:
            raise
        universities_dset.create_dataset("ukprns", data=ukprns)

        # Store registered_members_ids subgroups information
        if all_subgroups:  # Only create these datasets if we have subgroups
            universities_dset.create_dataset("registered_members_subgroups", data=subgroup_ids, maxshape=(None,))

            # Create datasets for each subgroup
            for subgroup_id in all_subgroups:
                # Store counts for this subgroup
                universities_dset.create_dataset(
                    f"registered_members_count_sg{subgroup_id}", 
                    data=subgroup_counts[subgroup_id], 
                    maxshape=(None,)
                )

                # Store flattened members for this subgroup
                flattened_members = flattened_subgroup_members[subgroup_id]
                universities_dset.create_dataset(
                    f"registered_members_ids_sg{subgroup_id}", 
                    data=flattened_members, 
                    maxshape=(None,)
                )