Skip to content

Simulator

Module containing the Simulator class, which handles much of managing how the world changes as infection spreads.

Simulator

Source code in june/simulator.py
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
class Simulator:
    """ """
    ActivityManager = ActivityManager

    def __init__(
        self,
        world: World,
        interaction: Interaction,
        timer: Timer,
        activity_manager: ActivityManager,
        epidemiology: Epidemiology,
        events: Optional[Events] = None,
        record: Optional[Record] = None,
        feature_flags: Optional[dict] = None
    ):
        """
        Class to run an epidemic spread simulation on the world.

        Parameters:
          world (World):
            Instance of the world class.
          interaction (Interaction):
            Instance of the Interaction class
          timer (Timer):
            The timer class keeps track of what stage of the day it is,
            and which types of activities are allowed
          activity_manager (ActivityManager):
            Helps manage allocating which activities people choose to do in a
            given timestep.
          epidemiology (Epidemiology):
            Contains information about how the disease propogates.
          events (Optional[Events]):
            Events object, adding in special events.
          record (Optional[Record]):
            Record object to keep track of the simulation as it goes.
          feature_flags (Optional[dict]):
            Dictionary that says which features are enabled. 
        """
        # Process feature flags with defaults
        if feature_flags is None:
            feature_flags = {}

        self.friend_hangouts_enabled = feature_flags.get("friend_hangouts_enabled", False)
        self.sexual_encounters_enabled = feature_flags.get("sexual_encounters_enabled", False)
        self.test_and_trace_enabled = feature_flags.get("test_and_trace_enabled", False)
        self.ratty_dynamics_enabled = feature_flags.get("ratty_dynamics_enabled", False)
        self.rat_data_saving_enabled = feature_flags.get("rat_data_saving_enabled", True)  # Default to True

        # Original initialisation code
        self.activity_manager = activity_manager
        self.world = world
        self.interaction = interaction
        self.events = events
        self.timer = timer
        self.epidemiology = epidemiology

        if self.epidemiology:
            self.epidemiology.set_medical_care(
                world=world, activity_manager=activity_manager
            )
            self.epidemiology.set_immunity(self.world)
            self.epidemiology.set_past_vaccinations(
                people=self.world.people, date=self.timer.date, record=record
            )

        if self.events is not None:
            self.events.init_events(world=world)

        self.record = record
        if self.record is not None and self.record.record_static_data:
            self.record.static_data(world=world)

        # Only initialise rat manager if feature is enabled
        self.rat_manager = None
        self.save_rat_data = False

        if self.ratty_dynamics_enabled:
            output_logger.info("Ratty dynamics enabled, initialising rat manager")
            from june.zoonosis.rat_manager import RatManager

            # Use record path for rat density files if available
            if self.record and hasattr(self.record, 'record_path'):
                rat_density_path = str(self.record.record_path / "rat_density_map.npy")
            else:
                rat_density_path = "rat_density_map.npy"  # Fallback

            # Normal initialisation - will be overwritten if checkpoint is restored
            self.rat_manager = RatManager(world=world, precomputed_density_path=rat_density_path)
            self.save_rat_data = self.rat_data_saving_enabled
            output_logger.info(f"Rat data saving: {self.save_rat_data}")
            output_logger.info(f"Rat density path: {rat_density_path}")

        # Initialise contact manager if test and trace is enabled or sexual encounters are enabled
        self.contact_manager = None
        if self.test_and_trace_enabled or self.sexual_encounters_enabled:
            output_logger.info("Test and Trace or Sexual Encounters enabled, initialising contact manager")
            self.contact_manager = ContactManager(self)

            # Configure the contact retention based on policy settings            
            disease_config = None

            disease_config = GlobalContext.get_disease_config()
            output_logger.info("Using disease_config from GlobalContext")

            # Use disease_config if available
            if disease_config is not None:
                tracing_data = disease_config.policy_manager.get_policy_data("tracing")
                self.contact_retention_days = tracing_data.get("contact_retention_days", 14) if tracing_data else 14
                output_logger.info(f"Using contact retention days from config: {self.contact_retention_days}")

            # Connect contact manager to leisure system if it exists
            if self.activity_manager.leisure is not None:
                output_logger.info("Connecting contact manager to leisure system")
                self.activity_manager.leisure.set_contact_manager(self.contact_manager)

            # Connect contact manager to sexual encounter system if it exists
            if self.activity_manager.sexual_encounter is not None:
                output_logger.info("Connecting contact manager to sexual encounter system")
                self.activity_manager.sexual_encounter.contact_manager = self.contact_manager
        else:
            output_logger.info("Test and Trace and Sexual Encounters disabled, skipping contact manager initialisation")

        # Initialise zoonotic transmission if rat_manager is properly initialised and feature is enabled
        self.zoonotic_transmission = None
        if self.ratty_dynamics_enabled and self.rat_manager is not None and ZoonoticTransmission is not None:
            output_logger.info("Initialising zoonotic transmission module")
            self.zoonotic_transmission = ZoonoticTransmission(rat_manager=self.rat_manager)
            output_logger.info("Zoonotic transmission module initialised successfully")

        # Initialise checkpointing system placeholder
        # Actual checkpointing setup happens in from_file() method with config
        self.checkpointing = None


    @classmethod
    def from_file(
        cls,
        world: World,
        interaction: Interaction,
        policies: Optional[Policies] = None,
        events: Optional[Events] = None,
        epidemiology: Optional[Epidemiology] = None,
        leisure: Optional[Leisure] = None,
        travel: Optional[Travel] = None,
        sexual_encounter: Optional[SexualEncounter] = None,
        config_filename: str = default_config_filename,
        record: Optional[Record] = None,
    ) -> "Simulator":
        """Load config for simulator from world.yaml

        Args:
            world (World): 
            interaction (Interaction): 
            policies (Optional[Policies], optional): (Default value = None)
            events (Optional[Events], optional): (Default value = None)
            epidemiology (Optional[Epidemiology], optional): (Default value = None)
            leisure (Optional[Leisure], optional): (Default value = None)
            travel (Optional[Travel], optional): (Default value = None)
            sexual_encounter (Optional[SexualEncounter], optional): (Default value = None)
            config_filename (str, optional): (Default value = default_config_filename)
            record (Optional[Record], optional): (Default value = None)
        """
        # Load the configuration file to get feature flags
        with open(config_filename) as f:
            config = yaml.load(f, Loader=yaml.FullLoader)

        # Extract feature flags with defaults in case they're not in the config
        features = config.get("features", {})

        #Friendship networks
        friend_hangouts_config = features.get("friend_hangouts", {"enabled": False})
        friend_hangouts_enabled = friend_hangouts_config.get("enabled", False)

        # Sexual encounters settings
        sexual_encounters_config = features.get("sexual_encounters", {"enabled": False})
        sexual_encounters_enabled = sexual_encounters_config.get("enabled", False)

        # Test and trace settings
        test_and_trace_config = features.get("test_and_trace", {"enabled": False})
        test_and_trace_enabled = test_and_trace_config.get("enabled", False)

        # Ratty dynamics settings
        ratty_dynamics_config = features.get("ratty_dynamics", {"enabled": False})
        ratty_dynamics_enabled = ratty_dynamics_config.get("enabled", False)
        rat_data_saving_enabled = ratty_dynamics_config.get("save_data", True)  # Default to True


        output_logger.info(f"Feature flags from config: Friend hangouts: {friend_hangouts_enabled}, "
                        f"Sexual encounters: {sexual_encounters_enabled}, "
                        f"Test and Trace: {test_and_trace_enabled}, "
                        f"Ratty Dynamics: {ratty_dynamics_enabled}, "
                        f"Rat Data Saving: {rat_data_saving_enabled}, ")

        # Continue with original method
        timer = Timer.from_file(config_filename=config_filename)
        activity_manager = cls.ActivityManager.from_file(
            config_filename=config_filename,
            world=world,
            leisure=leisure,
            travel=travel,
            sexual_encounter=sexual_encounter,
            policies=policies,
            timer=timer,
            record=record,
        )

        # Store feature flags to pass to the constructor
        feature_flags = {
            "friend_hangouts_enabled": friend_hangouts_enabled,
            "sexual_encounters_enabled": sexual_encounters_enabled,
            "test_and_trace_enabled": test_and_trace_enabled,
            "ratty_dynamics_enabled": ratty_dynamics_enabled,
            "rat_data_saving_enabled": rat_data_saving_enabled
        }

        simulator = cls(
            world=world,
            interaction=interaction,
            timer=timer,
            events=events,
            activity_manager=activity_manager,
            epidemiology=epidemiology,
            record=record,
            feature_flags=feature_flags
        )

        # Initialise checkpointing system with config file
        if CHECKPOINTING_AVAILABLE:
            # Replace the default checkpointing with config-based one

            # Get the checkpoint directories (separate read/write for child runs)
            checkpoint_read_dir = "checkpoints"
            checkpoint_write_dir = "checkpoints"

            if hasattr(simulator, 'record') and simulator.record and hasattr(simulator.record, 'record_path'):
                run_dir = simulator.record.record_path.parent
                own_checkpoint_dir = run_dir / "checkpoints"

                # Check if this might be a child run by looking for metadata
                metadata_file = run_dir / "metadata.json"
                if metadata_file.exists():
                    try:
                        import json
                        with open(metadata_file, 'r') as f:
                            metadata = json.load(f)

                        parent_run_id = metadata.get("parent_run_id")
                        if parent_run_id:
                            # This is a child run - separate read and write directories
                            parent_checkpoint_dir = run_dir.parent / parent_run_id / "checkpoints"
                            if parent_checkpoint_dir.exists():
                                checkpoint_read_dir = str(parent_checkpoint_dir)
                                checkpoint_write_dir = str(own_checkpoint_dir)
                                output_logger.info(f"Child run detected:")
                                output_logger.info(f"  - Reading checkpoints from parent: {checkpoint_read_dir}")
                                output_logger.info(f"  - Writing checkpoints to child: {checkpoint_write_dir}")
                            else:
                                checkpoint_read_dir = str(own_checkpoint_dir)
                                checkpoint_write_dir = str(own_checkpoint_dir)
                                output_logger.warning(f"Parent checkpoint directory not found, using child directory: {checkpoint_write_dir}")
                        else:
                            # Regular run - use own checkpoint directory for both
                            checkpoint_read_dir = str(own_checkpoint_dir)
                            checkpoint_write_dir = str(own_checkpoint_dir)
                            output_logger.info(f"Regular run using own checkpoint directory: {checkpoint_write_dir}")
                    except Exception as e:
                        checkpoint_read_dir = str(own_checkpoint_dir)
                        checkpoint_write_dir = str(own_checkpoint_dir)
                        output_logger.warning(f"Failed to read metadata, using default directory: {checkpoint_write_dir}")
                else:
                    checkpoint_read_dir = str(own_checkpoint_dir)
                    checkpoint_write_dir = str(own_checkpoint_dir)
                    output_logger.info(f"No metadata file, using default directory: {checkpoint_write_dir}")

            # Replace with config-based checkpointing
            simulator.checkpointing = add_checkpointing_from_config_with_directories(
                simulator, 
                config_path=config_filename,
                checkpoint_read_dir=checkpoint_read_dir,
                checkpoint_write_dir=checkpoint_write_dir
            )
            output_logger.info(f"Checkpointing system initialised from config: {config_filename}")

        return simulator


    def clear_world(self):
        """Removes everyone from all possible groups, sets everyone's busy attribute
        to False, and cleans up skinny persons that have moved back home.

        """
        # Clear all groups first
        for super_group_name in self.activity_manager.all_super_groups:
            if "visits" in super_group_name:
                continue
            try:
                grouptype = getattr(self.world, super_group_name, None)
                if grouptype is not None:
                    for group in grouptype.members:
                        group.clear()
            except AttributeError:
                # If the attribute doesn't exist, just continue
                continue

        # Reset busy flags and leisure subgroups
        for person in self.world.people.members:            
            person.busy = False
            person.subgroups.leisure = None

        # Clean up skinny persons
        from june.demography import Person
        to_remove = []

        # Find all skinny persons (persons not on their home rank)
        for person_id, person in list(Person._persons.items()):
            if hasattr(person, '_current_rank') and person._current_rank != mpi_rank:
                to_remove.append(person_id)

        # Remove all identified skinny persons
        for person_id in to_remove:
            if person_id in Person._persons:
                del Person._persons[person_id]

        # Synchronise removal across ranks
        mpi_comm.Barrier()


    def do_timestep(self):
        """Perform a time step in the simulation. First, ActivityManager is called
        to send people to the corresponding subgroups according to the current daytime.
        Then we iterate over all the groups and create an InteractiveGroup object, which
        extracts the relevant information of each group to carry the interaction in it.
        We then pass the interactive group to the interaction module, which returns the ids
        of the people who got infected. We record the infection locations, update the health
        status of the population, and distribute scores among the infectors to calculate R0.

        """
        output_logger.info("==================== timestep ====================")
        tick_s, tickw_s = perf_counter(), wall_clock()
        tick, tickw = perf_counter(), wall_clock()

        if self.activity_manager.policies is not None:
            self.activity_manager.policies.interaction_policies.apply(
                date=self.timer.date, interaction=self.interaction
            )
            self.activity_manager.policies.regional_compliance.apply(
                date=self.timer.date, regions=self.world.regions
            )

        activities = self.timer.activities
        # apply events
        if self.events is not None:
            self.events.apply(
                date=self.timer.date,
                world=self.world,
                activities=activities,
                day_type=self.timer.day_type,
                simulator=self,
            )

        if not activities or len(activities) == 0:
            return

        (
            people_from_abroad_dict,
            n_people_from_abroad,
            n_people_going_abroad,
            to_send_abroad,  # useful for knowing who's MPI-ing, so can send extra info as needed.
        ) = self.activity_manager.do_timestep(record=self.record)
        tick_interaction = perf_counter()
        if self.interaction:
            self.interaction.current_time = self.timer.now

        # get the supergroup instances that are active in this time step:
        active_super_groups = self.activity_manager.active_super_groups
        super_group_instances = []
        for super_group_name in active_super_groups:
            if "visits" not in super_group_name:
                try:
                    super_group_instance = getattr(self.world, super_group_name, None)
                    if super_group_instance is not None and len(super_group_instance) > 0:
                        super_group_instances.append(super_group_instance)
                except (AttributeError, TypeError) as e:
                    output_logger.warning(f"Could not access supergroup {super_group_name}: {e}")
                    continue

        # Initialise counters for people tracking
        initial_people = len(self.world.people)  # People before movement
        n_cemetery = sum(len(cemetery.people) for cemetery in self.world.cemeteries.members)

        # Track infections
        infected_ids = []  # ids of the newly infected people
        infection_ids = []  # ids of the viruses they got

        output_logger.info(
            f"Info for rank {mpi_rank}, "
            f"Date = {self.timer.date}, "
            f"number of deaths = {n_cemetery}, "
            f"number of infected = {len(self.world.people.infected)}"
        )

       # Process groups for infections only
        for super_group in super_group_instances:
            for group in super_group:
                if group.external:
                    continue

                # Get people from abroad for this group
                people_from_abroad = people_from_abroad_dict.get(
                    group.spec, {}
                ).get(group.id, None)
                # Only track new infections, ignore group size
                new_infected, new_infections, _ = self.interaction.time_step_for_group(
                    group=group,
                    people_from_abroad=people_from_abroad,
                    delta_time=self.timer.duration,
                    record=self.record,
                )

                infected_ids.extend(new_infected)
                infection_ids.extend(new_infections)

        mpi_comm.Barrier()


        # Calculate final people count after movement
        final_people = len(self.world.people)  # People after movement

        tock_interaction = perf_counter()
        rank_logger.info(
            f"Rank {mpi_rank} -- interaction -- {tock_interaction-tick_interaction}"
        )

        self.epidemiology.do_timestep(
            simulator=self,
            world=self.world,
            timer=self.timer,
            record=self.record,
            infected_ids=infected_ids,
            infection_ids=infection_ids,
            people_from_abroad_dict=people_from_abroad_dict
        )

        self.interaction.print_transmission_statistics()

        is_end_of_day = self.timer.is_end_of_day()

        if is_end_of_day:
            # Sync school incident counts across MPI ranks for school avoidance behavior
            self._sync_school_incidents()

        # Clean old contacts at the end of the day
            if self.test_and_trace_enabled and self.contact_manager is not None:

                self.contact_manager.process_test_results(self.timer.now)

                mpi_comm.Barrier()    

                output_logger.info("Cleaning old contacts in the contact manager")
                output_logger.info(f"Current simulation day (fractional): {self.timer.now}")
                self.contact_manager.clean_old_contacts(
                    current_timestamp=self.timer.now,
                    days_to_remember=self.contact_retention_days,
                    force=True
                )

            # Add rat simulation step
            if self.rat_manager is not None:
                print("\n=== Running Rat Disease Simulation Step ===")
                # Pass the current time step duration to the rat_manager
                rat_results = self.rat_manager.time_step(1)
                # Optionally log some results
                print(f"Number of Rats: {self.rat_manager.num_rats}"),
                print(f"Rat infections: {rat_results['infected']}")
                print(f"Rats with high immunity: {rat_results['immunity_08']}")
                print(f"Rats with medium immunity: {rat_results['immunity_05']}")

                if self.epidemiology is not None and self.zoonotic_transmission is not None:
                    print("\n=== Processing Rat-to-Human Transmissions ===")
                    # Use the zoonotic transmission module instead
                    human_infections = self.zoonotic_transmission.process_rat_to_human_infections(
                        world=self.world,
                        timer=self.timer,
                        epidemiology=self.epidemiology,
                        record=self.record,
                        duration=1.0  # Full day duration (24 hours)
                    )
                    print(f"New human infections from rats: {human_infections}")
                    human2ratinfections = self.zoonotic_transmission.process_human_to_rat_infections(
                        world=self.world, 
                        timer=self.timer,
                        epidemiology=self.epidemiology,
                        record=self.record,
                        duration=1.0
                    )
                    print(f"New rat infections from humans: {human2ratinfections}")

                # Save rat simulation data for post-processing (all ranks)
                if self.save_rat_data:
                    # Determine output directory for data
                    if self.record and hasattr(self.record, 'record_path'):
                        rat_data_dir = str(self.record.record_path / "rat_data")
                    else:
                        rat_data_dir = "outputs/rat_data"  # Fallback

                    # Save simulation data (much faster than creating images)
                    self.rat_manager.save_simulation_data(
                        day=int(self.timer.now),
                        date=self.timer.date,
                        output_dir=rat_data_dir
                    )

        tick, tickw = perf_counter(), wall_clock()
        mpi_comm.Barrier()
        tock, tockw = perf_counter(), wall_clock()
        rank_logger.info(f"Rank {mpi_rank} -- interaction_waiting -- {tock-tick}")

        # Ensure all ranks have finished processing
        mpi_comm.Barrier()

        # Gather detailed counts from all ranks
        local_counts = (
            initial_people,  # Initial people count
            final_people,    # Final people count
            n_people_from_abroad,
            n_people_going_abroad
        )
        all_counts = mpi_comm.allgather(local_counts)

        # Calculate global totals
        total_initial = sum(c[0] for c in all_counts)
        total_final = sum(c[1] for c in all_counts)
        total_from_abroad = sum(c[2] for c in all_counts)
        total_going_abroad = sum(c[3] for c in all_counts)

        # Verify global conservation of people
        if total_initial != total_final:
            movement_delta = total_final - total_initial
            abroad_delta = total_from_abroad - total_going_abroad
            raise SimulatorError(
                f"Global people conservation error on rank {mpi_rank}:\n"
                f"Total initial people: {total_initial}\n"
                f"Total final people: {total_final}\n"
                f"Net change in people: {movement_delta}\n"
                f"Expected net change (from_abroad - going_abroad): {abroad_delta}\n"
                f"Discrepancy: {movement_delta - abroad_delta}\n"
                f"Movement details:\n"
                f"- Total from abroad: {total_from_abroad}\n"
                f"- Total going abroad: {total_going_abroad}\n"
                f"Local counts on this rank:\n"
                f"- Initial people: {initial_people}\n"
                f"- Final people: {final_people}\n"
                f"- From abroad: {n_people_from_abroad}\n"
                f"- Going abroad: {n_people_going_abroad}\n"
                f"- Net movement: {final_people - initial_people}"
            )

        if self.test_and_trace_enabled:
            #from june.records.event_recording import are_test_and_trace_policies_active
            #if are_test_and_trace_policies_active():
                #print_tt_simulation_report(days_simulated=self.timer.total_days)
            tt_recorder = GlobalContext.get_tt_event_recorder()
            if tt_recorder:
                tt_recorder.time_step(self.timer.now)


        # remove everyone from their active groups
        self.clear_world()

        tock, tockw = perf_counter(), wall_clock()
        output_logger.info(
            f"CMS: Timestep for rank {mpi_rank}/{mpi_size} - {tock - tick_s},"
            f"{tockw-tickw_s} - {self.timer.date}\n"
        )
        mpi_logger.info(f"{self.timer.date},{mpi_rank},timestep,{tock-tick_s}")

        # Force synchronisation point for random state consistency
        if mpi_available:
            mpi_comm.Barrier()

    def run(self):
        """Run simulation with n_seed initial infections"""

        # Calculate remaining days to run
        current_time = self.timer.now
        remaining_days = self.timer.total_days - current_time

        output_logger.info(
            f"Starting simulation for {self.timer.total_days} days at day {self.timer.date},"
            f"to run for {remaining_days:.2f} days"
        )

        if self.test_and_trace_enabled:
            # Check if TTEventRecorder already exists (from checkpoint restoration)
            existing_recorder = GlobalContext.get_tt_event_recorder()

            if existing_recorder is not None:
                output_logger.info("Test and Trace enabled, using existing TTEventRecorder from checkpoint")
                output_logger.info(f"Existing TTEventRecorder filename: {existing_recorder.filename}")
            else:
                output_logger.info("Test and Trace enabled, no existing TTEventRecorder found")
                output_logger.info("Initialising new TTEventRecorder")

                # Use record path for TTEventRecorder if available
                if self.record and hasattr(self.record, 'record_path'):
                    tt_output_dir = self.record.record_path / "h5_test_trace"
                else:
                    tt_output_dir = "./results/h5_test_trace"  # Fallback

                tt_recorder = TTEventRecorder(output_dir=str(tt_output_dir))
                GlobalContext.set_tt_event_recorder(tt_recorder)
                output_logger.info(f"New TTEventRecorder filename: {tt_recorder.filename}")
                output_logger.info(f"TTEventRecorder output directory: {tt_output_dir}")

                # Apply any pending TTEventRecorder data from checkpoint restoration
                if hasattr(self, '_pending_tt_event_recorder_data'):
                    output_logger.info("Applying pending TTEventRecorder data from checkpoint")
                    self._apply_pending_tt_event_recorder_data(tt_recorder)
                    delattr(self, '_pending_tt_event_recorder_data')
                    output_logger.info("TTEventRecorder data restoration completed")

        else:
            output_logger.info("Test and Trace disabled, skipping TTEventRecorder")
            GlobalContext.set_tt_event_recorder(None)

        # Rat manager is already initialised normally

        GlobalContext.set_simulator(self)

        # Update registered members home ranks after potential checkpoint restoration
        self.update_registered_members_home_ranks()

        # Update friend home ranks after domain splitting
        if self.friend_hangouts_enabled:
            self.update_friends_home_ranks()
            mpi_comm.Barrier()

        self.clear_world()

        if self.record is not None:
            try:
                self.record.parameters(
                    interaction=self.interaction,
                    epidemiology=self.epidemiology,
                    activity_manager=self.activity_manager,
                )
            except Exception as e:
                output_logger.error(f"Error recording parameters: {e}")

        #START OF THE SIMULATION LOOP
        while self.timer.date < self.timer.final_date:            

            if self.epidemiology:
                self.epidemiology.infection_seeds_timestep(
                    self.timer, record=self.record
                )

            mpi_comm.Barrier()
            if mpi_rank == 0:
                rank_logger.info("Next timestep")
            self.do_timestep()

            next(self.timer)

            # Check for checkpoint creation AFTER advancing to next day
            # This way checkpoint represents "ready to start the next day"
            if self.checkpointing is not None:
                integrate_checkpointing_in_simulation_loop(self.checkpointing)

        # Ensure all ranks have finished saving data 
        if self.save_rat_data:
            mpi_comm.Barrier()  # Wait for all ranks to finish saving data

            # Just report data location - no post-processing during simulation
            if mpi_rank == 0 and self.rat_manager is not None:
                if self.record and hasattr(self.record, 'record_path'):
                    rat_data_dir = self.record.record_path / "rat_data"
                else:
                    rat_data_dir = "outputs/rat_data"

                output_logger.info(f"Rat simulation data saved to: {rat_data_dir}")
                output_logger.info("To create visualizations, run:")
                output_logger.info(f"   python plot_maker/post_process_rat_data.py {rat_data_dir}")

        if self.record:
            self.record.combine_outputs()

        if self.test_and_trace_enabled:
            from june.records.test_trace_event_recording import export_simulation_results

            # Use record path for test and trace export if available
            if self.record and hasattr(self.record, 'record_path'):
                tt_export_dir = str(self.record.record_path)
            else:
                tt_export_dir = "./results"  # Fallback

            export_simulation_results(output_dir=tt_export_dir)

        # Print final validation summary for comparison
        #from june.checkpointing.simulator_checkpointing import print_validation_summary
        #print_validation_summary(self, "FINAL")


    def update_registered_members_home_ranks(self):
        """For each group type (companies, care homes, schools, universities),
        update the registered_members_ids to include the rank where each member lives.

        Works in both MPI and non-MPI environments:
        - In MPI mode: Ranks collaborate to find member home ranks
        - In non-MPI mode: All members are assigned to rank 0

        """

        if mpi_available:
            output_logger.info(f"Updating registered members home ranks on rank {mpi_rank}")
        else:
            output_logger.info("Updating registered members home ranks (non-MPI mode)")

        # Group types to check
        group_types = [
            ("companies", "Company"), 
            ("care_homes", "CareHome"), 
            ("schools", "School"),
            ("universities", "University")
        ]

        # Step 1: Collect all member IDs from groups on this rank
        all_member_ids = set()
        groups_with_members = []

        for group_type_name, _ in group_types:
            group_type = getattr(self.world, group_type_name, None)
            if group_type is None or not hasattr(group_type, "members"):
                continue

            for group in group_type.members:
                if not hasattr(group, "registered_members_ids"):
                    continue

                for subgroup_id, member_ids in group.registered_members_ids.items():
                    for i, member_info in enumerate(member_ids):
                        # Extract the member ID (handle both plain IDs and tuples)
                        if isinstance(member_info, tuple) and len(member_info) == 2:
                            member_id = member_info[0]
                        else:
                            member_id = member_info

                        all_member_ids.add(member_id)

                # Track groups for later updating
                groups_with_members.append((group_type_name, group))

        # Convert to a sorted list for consistent ordering
        all_member_ids = sorted(list(all_member_ids))

        from june.demography.person import Person

        # Different logic for MPI vs non-MPI
        if mpi_available:
            # MPI mode: Distributed ID lookup

            # Step 2: Check which IDs exist on this rank
            local_id_to_rank = {}
            unknown_ids = []

            for member_id in all_member_ids:
                person = Person.find_by_id(member_id)
                if person is not None:
                    # Found locally
                    local_id_to_rank[member_id] = mpi_rank
                else:
                    # Not found locally - add to list of IDs to query other ranks
                    unknown_ids.append(member_id)

            # Step 3: Share only the unknown IDs with other ranks
            all_unknown_ids = mpi_comm.allgather(unknown_ids)

            # Step 4: Check if any of the IDs from other ranks exist on this rank
            additional_mappings = {}

            for rank, rank_unknown_ids in enumerate(all_unknown_ids):
                if rank == mpi_rank:
                    # Skip our own unknown IDs
                    continue

                for member_id in rank_unknown_ids:
                    person = Person.find_by_id(member_id)
                    if person is not None:
                        # We found an ID that another rank was looking for
                        additional_mappings[member_id] = mpi_rank

            # Step 5: Share these additional mappings
            all_additional_mappings = mpi_comm.allgather(additional_mappings)

            # Build the global ID-to-rank mapping
            global_id_to_rank = {}
            # Add our local findings first
            global_id_to_rank.update(local_id_to_rank)

            # Add additional mappings from all ranks
            for rank_mappings in all_additional_mappings:
                global_id_to_rank.update(rank_mappings)

        else:
            # Non-MPI mode: All IDs are on rank 0
            global_id_to_rank = {member_id: 0 for member_id in all_member_ids}

        # Step 6: Update all groups with the correct home rank information
        for group_type_name, group in groups_with_members:
            for subgroup_id, member_ids in list(group.registered_members_ids.items()):
                updated_member_ids = []

                for member_info in member_ids:
                    # Extract the member ID (handle both plain IDs and tuples)
                    if isinstance(member_info, tuple) and len(member_info) == 2:
                        member_id = member_info[0]
                    else:
                        member_id = member_info

                    # Get the home rank from the global mapping
                    home_rank = global_id_to_rank.get(member_id)

                    if home_rank is not None:
                        # Add to the updated list
                        updated_member_ids.append((member_id, home_rank))
                    else:
                        # ID not found in any rank, use default of 0
                        # This should not happen if everything is working correctly
                        updated_member_ids.append((member_id, 0))

                # Replace the old list with the updated one
                group.registered_members_ids[subgroup_id] = updated_member_ids

        # Ensure all ranks are synchronised in MPI mode
        mpi_comm.Barrier()

    def update_friends_home_ranks(self):
        """Update the home rank for each person's friends after domain splitting.
        Replaces the default home rank (0) with the actual home rank where each friend resides.

        Works in both MPI and non-MPI environments:
        - In MPI mode: Ranks collaborate to find friend home ranks
        - In non-MPI mode: All friends are assigned to rank 0

        """

        if not mpi_available:
            return

        # Step 1: Collect all friend IDs from people on this rank
        all_friend_ids = set()
        people_with_friends = []

        for person in self.world.people.members:
            if hasattr(person, 'friends') and person.friends:
                # Handle both old format (just home_rank) and new format (dict)
                for friend_id, friend_data in person.friends.items():
                    all_friend_ids.add(friend_id)
                people_with_friends.append(person)

        # Convert to sorted list for consistent ordering
        all_friend_ids = sorted(list(all_friend_ids))

        from june.demography.person import Person

        # Step 2: Check which friend IDs exist on this rank
        local_id_to_rank = {}
        unknown_ids = []

        for friend_id in all_friend_ids:
            person = Person.find_by_id(friend_id)
            if person is not None:
                # Found locally - store their home rank
                local_id_to_rank[friend_id] = getattr(person, '_home_rank', mpi_rank)
            else:
                # Not found locally - add to list of IDs to query other ranks
                unknown_ids.append(friend_id)

        # Step 3: Share unknown IDs with other ranks
        all_unknown_ids = mpi_comm.allgather(unknown_ids)

        # Step 4: Check if any of the IDs from other ranks exist on this rank
        additional_mappings = {}

        for rank, rank_unknown_ids in enumerate(all_unknown_ids):
            if rank == mpi_rank:
                # Skip our own unknown IDs
                continue

            for friend_id in rank_unknown_ids:
                person = Person.find_by_id(friend_id)
                if person is not None:
                    # Found a friend that another rank was looking for
                    additional_mappings[friend_id] = getattr(person, '_home_rank', mpi_rank)

        # Step 5: Share these additional mappings
        all_additional_mappings = mpi_comm.allgather(additional_mappings)

        # Build the global friend_id-to-home_rank mapping
        global_friend_to_home_rank = {}
        # Add our local findings first
        global_friend_to_home_rank.update(local_id_to_rank)

        # Add additional mappings from all ranks
        for rank_mappings in all_additional_mappings:
            global_friend_to_home_rank.update(rank_mappings)

        # Step 6: Update each person's friends dictionary with correct home ranks
        updated_people = 0
        updated_friends = 0

        for person in people_with_friends:
            person_updated = False

            # Create a new friends dictionary with updated home ranks
            updated_friends_dict = {}

            for friend_id, friend_data in person.friends.items():
                # Handle both old format (just home_rank) and new format (dict)
                if isinstance(friend_data, dict):
                    # New format - update home_rank, keep hobbies
                    current_home_rank = friend_data.get("home_rank", 0)
                    actual_home_rank = global_friend_to_home_rank.get(friend_id)

                    if actual_home_rank is not None:
                        updated_friends_dict[friend_id] = {
                            "home_rank": actual_home_rank,
                            "hobbies": friend_data.get("hobbies", [])
                        }

                        # Track if this friend's home rank was updated
                        if current_home_rank != actual_home_rank:
                            updated_friends += 1
                            person_updated = True
                    else:
                        # Friend ID not found in any rank, keep current values
                        updated_friends_dict[friend_id] = friend_data
                        output_logger.warning(f"Friend ID {friend_id} not found in any rank for person {person.id}")

            # Replace the person's friends dictionary
            person.friends = updated_friends_dict

            if person_updated:
                updated_people += 1

        # Log statistics
        # Gather statistics from all ranks
        all_updated_people = mpi_comm.allgather(updated_people)
        all_updated_friends = mpi_comm.allgather(updated_friends)

        if mpi_rank == 0:
            total_updated_people = sum(all_updated_people)
            total_updated_friends = sum(all_updated_friends)
            output_logger.info(f"Friends home ranks updated: {total_updated_people} people, {total_updated_friends} friend relationships")

        # Ensure all ranks are synchronised
        mpi_comm.Barrier()

    def restore_from_checkpoint(self, checkpoint_name: str) -> bool:
        """Restore simulation from a checkpoint.

        Args:
            checkpoint_name (str): Name of the checkpoint to restore from

        Returns:
            bool: True if restoration was successful
        """
        if self.checkpointing is None:
            output_logger.warning("Checkpointing system not available")
            return False

        try:
            return self.checkpointing.restore_from_checkpoint(checkpoint_name)
        except Exception as e:
            output_logger.error(f"Error restoring from checkpoint: {e}")
            return False

    def _apply_pending_tt_event_recorder_data(self, tt_recorder):
        """Apply pending TTEventRecorder data from checkpoint restoration.

        Args:
            tt_recorder (TTEventRecorder): The newly created TTEventRecorder to restore data into
        """
        if not hasattr(self, '_pending_tt_event_recorder_data'):
            return

        tt_data = self._pending_tt_event_recorder_data
        output_logger.info(f"Applying TTEventRecorder data from checkpoint")

        try:
            # Restore core counters
            tt_recorder.total_counters.update(tt_data.get('total_counters', {}))

            # Restore daily counters
            daily_data = tt_data.get('daily_counters', {})
            for day_str, counters in daily_data.items():
                day = int(day_str)
                for event_type, count in counters.items():
                    tt_recorder.daily_counters[day][event_type] = count

            # Restore unique IDs (convert back to sets)
            unique_ids_data = tt_data.get('unique_ids', {})
            for event_type, id_list in unique_ids_data.items():
                tt_recorder.unique_ids[event_type].update(id_list)

            # Restore current status (convert back to sets)
            currently_data = tt_data.get('currently', {})
            for status_type, id_list in currently_data.items():
                tt_recorder.currently[status_type].update(id_list)

            # Restore deltas
            tt_recorder.deltas.update(tt_data.get('deltas', {}))

            # Restore state tracking
            tt_recorder.last_delta_reset = tt_data.get('last_delta_reset', 0)
            if 'buffer_size' in tt_data:
                tt_recorder._buffer_size = tt_data['buffer_size']

            # Note: Skip event buffer restoration to avoid state changes
            # Event buffer should typically be empty after checkpointing anyway

            output_logger.info(f"TTEventRecorder data applied successfully:")
            output_logger.info(f"  - Total tests: {tt_recorder.total_counters.get('tested', 0)}")
            output_logger.info(f"  - Unique people tested: {len(tt_recorder.unique_ids.get('tested', set()))}")
            output_logger.info(f"  - Days with data: {len(tt_recorder.daily_counters)}")
            output_logger.info(f"  - Currently quarantined: {len(tt_recorder.currently.get('quarantined', set()))}")
            output_logger.info(f"  - Currently isolated: {len(tt_recorder.currently.get('isolated', set()))}")

        except Exception as e:
            output_logger.error(f"Failed to apply TTEventRecorder data: {e}")
            # Continue anyway - TTEventRecorder will work with default empty state

    def _sync_school_incidents(self):
        """Synchronize school incident counts (deaths and ICU transfers) across MPI ranks.
        Called once per day at end of timestep to ensure all ranks have consistent data
        for school avoidance behavior calculations.

        """
        if not mpi_available or mpi_size == 1:
            return  # No need to sync in single-rank mode

        # Collect local school incidents AND cross-rank incidents
        local_data = {
            'schools': {},  # school_id -> {'deaths': count, 'icu': count} for local schools
            'external_incidents': []  # [{'school_id': id, 'type': 'death'/'icu'}] for external schools
        }

        # Add local school counts
        if hasattr(self.world, 'schools'):
            for school in self.world.schools:
                if hasattr(school, 'student_deaths') and hasattr(school, 'student_icu_transfers'):
                    local_data['schools'][school.id] = {
                        'deaths': school.student_deaths,
                        'icu': school.student_icu_transfers
                    }

        # Add external incidents (stored temporarily during the day)
        if hasattr(self, '_external_school_incidents'):
            local_data['external_incidents'] = self._external_school_incidents
            # Clear after collecting
            self._external_school_incidents = []

        # Gather all data from all ranks
        all_rank_data = mpi_comm.allgather(local_data)

        # Aggregate incident counts
        global_school_incidents = {}

        # Process local school data
        for rank_data in all_rank_data:
            for school_id, incidents in rank_data['schools'].items():
                if school_id not in global_school_incidents:
                    global_school_incidents[school_id] = {'deaths': 0, 'icu': 0}
                global_school_incidents[school_id]['deaths'] += incidents['deaths'] 
                global_school_incidents[school_id]['icu'] += incidents['icu']

        # Process external incidents (cross-rank)
        for rank_data in all_rank_data:
            for incident in rank_data['external_incidents']:
                school_id = incident['school_id']
                incident_type = incident['type']

                if school_id not in global_school_incidents:
                    global_school_incidents[school_id] = {'deaths': 0, 'icu': 0}

                if incident_type == 'death':
                    global_school_incidents[school_id]['deaths'] += 1
                elif incident_type == 'icu':
                    global_school_incidents[school_id]['icu'] += 1

        # Update all local schools with global incident counts
        if hasattr(self.world, 'schools'):
            for school in self.world.schools:
                if school.id in global_school_incidents:
                    school.student_deaths = global_school_incidents[school.id]['deaths']
                    school.student_icu_transfers = global_school_incidents[school.id]['icu']

        # Store global incident data in world for ExternalGroup access
        if not hasattr(self.world, 'global_school_incidents'):
            self.world.global_school_incidents = {}
        self.world.global_school_incidents.update(global_school_incidents)

        # Debug output for rank 0
        if mpi_rank == 0:
            total_incidents = sum(data['deaths'] + data['icu'] for data in global_school_incidents.values())
            if total_incidents > 0:
                logging.info(f"[SCHOOL SYNC] Synchronized {len(global_school_incidents)} schools with incidents across {mpi_size} ranks")

    def _track_external_school_incident(self, school_id, incident_type):
        """Track incidents that happen to students whose schools are in other MPI ranks.
        These are collected and synchronized at end of day.

        Args:
            school_id: 
            incident_type: 
        """
        if not hasattr(self, '_external_school_incidents'):
            self._external_school_incidents = []

        self._external_school_incidents.append({
            'school_id': school_id,
            'type': incident_type
        })

__init__(world, interaction, timer, activity_manager, epidemiology, events=None, record=None, feature_flags=None)

Class to run an epidemic spread simulation on the world.

Parameters:

Name Type Description Default
world World

Instance of the world class.

required
interaction Interaction

Instance of the Interaction class

required
timer Timer

The timer class keeps track of what stage of the day it is, and which types of activities are allowed

required
activity_manager ActivityManager

Helps manage allocating which activities people choose to do in a given timestep.

required
epidemiology Epidemiology

Contains information about how the disease propogates.

required
events Optional[Events]

Events object, adding in special events.

None
record Optional[Record]

Record object to keep track of the simulation as it goes.

None
feature_flags Optional[dict]

Dictionary that says which features are enabled.

None
Source code in june/simulator.py
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
def __init__(
    self,
    world: World,
    interaction: Interaction,
    timer: Timer,
    activity_manager: ActivityManager,
    epidemiology: Epidemiology,
    events: Optional[Events] = None,
    record: Optional[Record] = None,
    feature_flags: Optional[dict] = None
):
    """
    Class to run an epidemic spread simulation on the world.

    Parameters:
      world (World):
        Instance of the world class.
      interaction (Interaction):
        Instance of the Interaction class
      timer (Timer):
        The timer class keeps track of what stage of the day it is,
        and which types of activities are allowed
      activity_manager (ActivityManager):
        Helps manage allocating which activities people choose to do in a
        given timestep.
      epidemiology (Epidemiology):
        Contains information about how the disease propogates.
      events (Optional[Events]):
        Events object, adding in special events.
      record (Optional[Record]):
        Record object to keep track of the simulation as it goes.
      feature_flags (Optional[dict]):
        Dictionary that says which features are enabled. 
    """
    # Process feature flags with defaults
    if feature_flags is None:
        feature_flags = {}

    self.friend_hangouts_enabled = feature_flags.get("friend_hangouts_enabled", False)
    self.sexual_encounters_enabled = feature_flags.get("sexual_encounters_enabled", False)
    self.test_and_trace_enabled = feature_flags.get("test_and_trace_enabled", False)
    self.ratty_dynamics_enabled = feature_flags.get("ratty_dynamics_enabled", False)
    self.rat_data_saving_enabled = feature_flags.get("rat_data_saving_enabled", True)  # Default to True

    # Original initialisation code
    self.activity_manager = activity_manager
    self.world = world
    self.interaction = interaction
    self.events = events
    self.timer = timer
    self.epidemiology = epidemiology

    if self.epidemiology:
        self.epidemiology.set_medical_care(
            world=world, activity_manager=activity_manager
        )
        self.epidemiology.set_immunity(self.world)
        self.epidemiology.set_past_vaccinations(
            people=self.world.people, date=self.timer.date, record=record
        )

    if self.events is not None:
        self.events.init_events(world=world)

    self.record = record
    if self.record is not None and self.record.record_static_data:
        self.record.static_data(world=world)

    # Only initialise rat manager if feature is enabled
    self.rat_manager = None
    self.save_rat_data = False

    if self.ratty_dynamics_enabled:
        output_logger.info("Ratty dynamics enabled, initialising rat manager")
        from june.zoonosis.rat_manager import RatManager

        # Use record path for rat density files if available
        if self.record and hasattr(self.record, 'record_path'):
            rat_density_path = str(self.record.record_path / "rat_density_map.npy")
        else:
            rat_density_path = "rat_density_map.npy"  # Fallback

        # Normal initialisation - will be overwritten if checkpoint is restored
        self.rat_manager = RatManager(world=world, precomputed_density_path=rat_density_path)
        self.save_rat_data = self.rat_data_saving_enabled
        output_logger.info(f"Rat data saving: {self.save_rat_data}")
        output_logger.info(f"Rat density path: {rat_density_path}")

    # Initialise contact manager if test and trace is enabled or sexual encounters are enabled
    self.contact_manager = None
    if self.test_and_trace_enabled or self.sexual_encounters_enabled:
        output_logger.info("Test and Trace or Sexual Encounters enabled, initialising contact manager")
        self.contact_manager = ContactManager(self)

        # Configure the contact retention based on policy settings            
        disease_config = None

        disease_config = GlobalContext.get_disease_config()
        output_logger.info("Using disease_config from GlobalContext")

        # Use disease_config if available
        if disease_config is not None:
            tracing_data = disease_config.policy_manager.get_policy_data("tracing")
            self.contact_retention_days = tracing_data.get("contact_retention_days", 14) if tracing_data else 14
            output_logger.info(f"Using contact retention days from config: {self.contact_retention_days}")

        # Connect contact manager to leisure system if it exists
        if self.activity_manager.leisure is not None:
            output_logger.info("Connecting contact manager to leisure system")
            self.activity_manager.leisure.set_contact_manager(self.contact_manager)

        # Connect contact manager to sexual encounter system if it exists
        if self.activity_manager.sexual_encounter is not None:
            output_logger.info("Connecting contact manager to sexual encounter system")
            self.activity_manager.sexual_encounter.contact_manager = self.contact_manager
    else:
        output_logger.info("Test and Trace and Sexual Encounters disabled, skipping contact manager initialisation")

    # Initialise zoonotic transmission if rat_manager is properly initialised and feature is enabled
    self.zoonotic_transmission = None
    if self.ratty_dynamics_enabled and self.rat_manager is not None and ZoonoticTransmission is not None:
        output_logger.info("Initialising zoonotic transmission module")
        self.zoonotic_transmission = ZoonoticTransmission(rat_manager=self.rat_manager)
        output_logger.info("Zoonotic transmission module initialised successfully")

    # Initialise checkpointing system placeholder
    # Actual checkpointing setup happens in from_file() method with config
    self.checkpointing = None

clear_world()

Removes everyone from all possible groups, sets everyone's busy attribute to False, and cleans up skinny persons that have moved back home.

Source code in june/simulator.py
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
def clear_world(self):
    """Removes everyone from all possible groups, sets everyone's busy attribute
    to False, and cleans up skinny persons that have moved back home.

    """
    # Clear all groups first
    for super_group_name in self.activity_manager.all_super_groups:
        if "visits" in super_group_name:
            continue
        try:
            grouptype = getattr(self.world, super_group_name, None)
            if grouptype is not None:
                for group in grouptype.members:
                    group.clear()
        except AttributeError:
            # If the attribute doesn't exist, just continue
            continue

    # Reset busy flags and leisure subgroups
    for person in self.world.people.members:            
        person.busy = False
        person.subgroups.leisure = None

    # Clean up skinny persons
    from june.demography import Person
    to_remove = []

    # Find all skinny persons (persons not on their home rank)
    for person_id, person in list(Person._persons.items()):
        if hasattr(person, '_current_rank') and person._current_rank != mpi_rank:
            to_remove.append(person_id)

    # Remove all identified skinny persons
    for person_id in to_remove:
        if person_id in Person._persons:
            del Person._persons[person_id]

    # Synchronise removal across ranks
    mpi_comm.Barrier()

do_timestep()

Perform a time step in the simulation. First, ActivityManager is called to send people to the corresponding subgroups according to the current daytime. Then we iterate over all the groups and create an InteractiveGroup object, which extracts the relevant information of each group to carry the interaction in it. We then pass the interactive group to the interaction module, which returns the ids of the people who got infected. We record the infection locations, update the health status of the population, and distribute scores among the infectors to calculate R0.

Source code in june/simulator.py
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
def do_timestep(self):
    """Perform a time step in the simulation. First, ActivityManager is called
    to send people to the corresponding subgroups according to the current daytime.
    Then we iterate over all the groups and create an InteractiveGroup object, which
    extracts the relevant information of each group to carry the interaction in it.
    We then pass the interactive group to the interaction module, which returns the ids
    of the people who got infected. We record the infection locations, update the health
    status of the population, and distribute scores among the infectors to calculate R0.

    """
    output_logger.info("==================== timestep ====================")
    tick_s, tickw_s = perf_counter(), wall_clock()
    tick, tickw = perf_counter(), wall_clock()

    if self.activity_manager.policies is not None:
        self.activity_manager.policies.interaction_policies.apply(
            date=self.timer.date, interaction=self.interaction
        )
        self.activity_manager.policies.regional_compliance.apply(
            date=self.timer.date, regions=self.world.regions
        )

    activities = self.timer.activities
    # apply events
    if self.events is not None:
        self.events.apply(
            date=self.timer.date,
            world=self.world,
            activities=activities,
            day_type=self.timer.day_type,
            simulator=self,
        )

    if not activities or len(activities) == 0:
        return

    (
        people_from_abroad_dict,
        n_people_from_abroad,
        n_people_going_abroad,
        to_send_abroad,  # useful for knowing who's MPI-ing, so can send extra info as needed.
    ) = self.activity_manager.do_timestep(record=self.record)
    tick_interaction = perf_counter()
    if self.interaction:
        self.interaction.current_time = self.timer.now

    # get the supergroup instances that are active in this time step:
    active_super_groups = self.activity_manager.active_super_groups
    super_group_instances = []
    for super_group_name in active_super_groups:
        if "visits" not in super_group_name:
            try:
                super_group_instance = getattr(self.world, super_group_name, None)
                if super_group_instance is not None and len(super_group_instance) > 0:
                    super_group_instances.append(super_group_instance)
            except (AttributeError, TypeError) as e:
                output_logger.warning(f"Could not access supergroup {super_group_name}: {e}")
                continue

    # Initialise counters for people tracking
    initial_people = len(self.world.people)  # People before movement
    n_cemetery = sum(len(cemetery.people) for cemetery in self.world.cemeteries.members)

    # Track infections
    infected_ids = []  # ids of the newly infected people
    infection_ids = []  # ids of the viruses they got

    output_logger.info(
        f"Info for rank {mpi_rank}, "
        f"Date = {self.timer.date}, "
        f"number of deaths = {n_cemetery}, "
        f"number of infected = {len(self.world.people.infected)}"
    )

   # Process groups for infections only
    for super_group in super_group_instances:
        for group in super_group:
            if group.external:
                continue

            # Get people from abroad for this group
            people_from_abroad = people_from_abroad_dict.get(
                group.spec, {}
            ).get(group.id, None)
            # Only track new infections, ignore group size
            new_infected, new_infections, _ = self.interaction.time_step_for_group(
                group=group,
                people_from_abroad=people_from_abroad,
                delta_time=self.timer.duration,
                record=self.record,
            )

            infected_ids.extend(new_infected)
            infection_ids.extend(new_infections)

    mpi_comm.Barrier()


    # Calculate final people count after movement
    final_people = len(self.world.people)  # People after movement

    tock_interaction = perf_counter()
    rank_logger.info(
        f"Rank {mpi_rank} -- interaction -- {tock_interaction-tick_interaction}"
    )

    self.epidemiology.do_timestep(
        simulator=self,
        world=self.world,
        timer=self.timer,
        record=self.record,
        infected_ids=infected_ids,
        infection_ids=infection_ids,
        people_from_abroad_dict=people_from_abroad_dict
    )

    self.interaction.print_transmission_statistics()

    is_end_of_day = self.timer.is_end_of_day()

    if is_end_of_day:
        # Sync school incident counts across MPI ranks for school avoidance behavior
        self._sync_school_incidents()

    # Clean old contacts at the end of the day
        if self.test_and_trace_enabled and self.contact_manager is not None:

            self.contact_manager.process_test_results(self.timer.now)

            mpi_comm.Barrier()    

            output_logger.info("Cleaning old contacts in the contact manager")
            output_logger.info(f"Current simulation day (fractional): {self.timer.now}")
            self.contact_manager.clean_old_contacts(
                current_timestamp=self.timer.now,
                days_to_remember=self.contact_retention_days,
                force=True
            )

        # Add rat simulation step
        if self.rat_manager is not None:
            print("\n=== Running Rat Disease Simulation Step ===")
            # Pass the current time step duration to the rat_manager
            rat_results = self.rat_manager.time_step(1)
            # Optionally log some results
            print(f"Number of Rats: {self.rat_manager.num_rats}"),
            print(f"Rat infections: {rat_results['infected']}")
            print(f"Rats with high immunity: {rat_results['immunity_08']}")
            print(f"Rats with medium immunity: {rat_results['immunity_05']}")

            if self.epidemiology is not None and self.zoonotic_transmission is not None:
                print("\n=== Processing Rat-to-Human Transmissions ===")
                # Use the zoonotic transmission module instead
                human_infections = self.zoonotic_transmission.process_rat_to_human_infections(
                    world=self.world,
                    timer=self.timer,
                    epidemiology=self.epidemiology,
                    record=self.record,
                    duration=1.0  # Full day duration (24 hours)
                )
                print(f"New human infections from rats: {human_infections}")
                human2ratinfections = self.zoonotic_transmission.process_human_to_rat_infections(
                    world=self.world, 
                    timer=self.timer,
                    epidemiology=self.epidemiology,
                    record=self.record,
                    duration=1.0
                )
                print(f"New rat infections from humans: {human2ratinfections}")

            # Save rat simulation data for post-processing (all ranks)
            if self.save_rat_data:
                # Determine output directory for data
                if self.record and hasattr(self.record, 'record_path'):
                    rat_data_dir = str(self.record.record_path / "rat_data")
                else:
                    rat_data_dir = "outputs/rat_data"  # Fallback

                # Save simulation data (much faster than creating images)
                self.rat_manager.save_simulation_data(
                    day=int(self.timer.now),
                    date=self.timer.date,
                    output_dir=rat_data_dir
                )

    tick, tickw = perf_counter(), wall_clock()
    mpi_comm.Barrier()
    tock, tockw = perf_counter(), wall_clock()
    rank_logger.info(f"Rank {mpi_rank} -- interaction_waiting -- {tock-tick}")

    # Ensure all ranks have finished processing
    mpi_comm.Barrier()

    # Gather detailed counts from all ranks
    local_counts = (
        initial_people,  # Initial people count
        final_people,    # Final people count
        n_people_from_abroad,
        n_people_going_abroad
    )
    all_counts = mpi_comm.allgather(local_counts)

    # Calculate global totals
    total_initial = sum(c[0] for c in all_counts)
    total_final = sum(c[1] for c in all_counts)
    total_from_abroad = sum(c[2] for c in all_counts)
    total_going_abroad = sum(c[3] for c in all_counts)

    # Verify global conservation of people
    if total_initial != total_final:
        movement_delta = total_final - total_initial
        abroad_delta = total_from_abroad - total_going_abroad
        raise SimulatorError(
            f"Global people conservation error on rank {mpi_rank}:\n"
            f"Total initial people: {total_initial}\n"
            f"Total final people: {total_final}\n"
            f"Net change in people: {movement_delta}\n"
            f"Expected net change (from_abroad - going_abroad): {abroad_delta}\n"
            f"Discrepancy: {movement_delta - abroad_delta}\n"
            f"Movement details:\n"
            f"- Total from abroad: {total_from_abroad}\n"
            f"- Total going abroad: {total_going_abroad}\n"
            f"Local counts on this rank:\n"
            f"- Initial people: {initial_people}\n"
            f"- Final people: {final_people}\n"
            f"- From abroad: {n_people_from_abroad}\n"
            f"- Going abroad: {n_people_going_abroad}\n"
            f"- Net movement: {final_people - initial_people}"
        )

    if self.test_and_trace_enabled:
        #from june.records.event_recording import are_test_and_trace_policies_active
        #if are_test_and_trace_policies_active():
            #print_tt_simulation_report(days_simulated=self.timer.total_days)
        tt_recorder = GlobalContext.get_tt_event_recorder()
        if tt_recorder:
            tt_recorder.time_step(self.timer.now)


    # remove everyone from their active groups
    self.clear_world()

    tock, tockw = perf_counter(), wall_clock()
    output_logger.info(
        f"CMS: Timestep for rank {mpi_rank}/{mpi_size} - {tock - tick_s},"
        f"{tockw-tickw_s} - {self.timer.date}\n"
    )
    mpi_logger.info(f"{self.timer.date},{mpi_rank},timestep,{tock-tick_s}")

    # Force synchronisation point for random state consistency
    if mpi_available:
        mpi_comm.Barrier()

from_file(world, interaction, policies=None, events=None, epidemiology=None, leisure=None, travel=None, sexual_encounter=None, config_filename=default_config_filename, record=None) classmethod

Load config for simulator from world.yaml

Parameters:

Name Type Description Default
world World
required
interaction Interaction
required
policies Optional[Policies]

(Default value = None)

None
events Optional[Events]

(Default value = None)

None
epidemiology Optional[Epidemiology]

(Default value = None)

None
leisure Optional[Leisure]

(Default value = None)

None
travel Optional[Travel]

(Default value = None)

None
sexual_encounter Optional[SexualEncounter]

(Default value = None)

None
config_filename str

(Default value = default_config_filename)

default_config_filename
record Optional[Record]

(Default value = None)

None
Source code in june/simulator.py
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
@classmethod
def from_file(
    cls,
    world: World,
    interaction: Interaction,
    policies: Optional[Policies] = None,
    events: Optional[Events] = None,
    epidemiology: Optional[Epidemiology] = None,
    leisure: Optional[Leisure] = None,
    travel: Optional[Travel] = None,
    sexual_encounter: Optional[SexualEncounter] = None,
    config_filename: str = default_config_filename,
    record: Optional[Record] = None,
) -> "Simulator":
    """Load config for simulator from world.yaml

    Args:
        world (World): 
        interaction (Interaction): 
        policies (Optional[Policies], optional): (Default value = None)
        events (Optional[Events], optional): (Default value = None)
        epidemiology (Optional[Epidemiology], optional): (Default value = None)
        leisure (Optional[Leisure], optional): (Default value = None)
        travel (Optional[Travel], optional): (Default value = None)
        sexual_encounter (Optional[SexualEncounter], optional): (Default value = None)
        config_filename (str, optional): (Default value = default_config_filename)
        record (Optional[Record], optional): (Default value = None)
    """
    # Load the configuration file to get feature flags
    with open(config_filename) as f:
        config = yaml.load(f, Loader=yaml.FullLoader)

    # Extract feature flags with defaults in case they're not in the config
    features = config.get("features", {})

    #Friendship networks
    friend_hangouts_config = features.get("friend_hangouts", {"enabled": False})
    friend_hangouts_enabled = friend_hangouts_config.get("enabled", False)

    # Sexual encounters settings
    sexual_encounters_config = features.get("sexual_encounters", {"enabled": False})
    sexual_encounters_enabled = sexual_encounters_config.get("enabled", False)

    # Test and trace settings
    test_and_trace_config = features.get("test_and_trace", {"enabled": False})
    test_and_trace_enabled = test_and_trace_config.get("enabled", False)

    # Ratty dynamics settings
    ratty_dynamics_config = features.get("ratty_dynamics", {"enabled": False})
    ratty_dynamics_enabled = ratty_dynamics_config.get("enabled", False)
    rat_data_saving_enabled = ratty_dynamics_config.get("save_data", True)  # Default to True


    output_logger.info(f"Feature flags from config: Friend hangouts: {friend_hangouts_enabled}, "
                    f"Sexual encounters: {sexual_encounters_enabled}, "
                    f"Test and Trace: {test_and_trace_enabled}, "
                    f"Ratty Dynamics: {ratty_dynamics_enabled}, "
                    f"Rat Data Saving: {rat_data_saving_enabled}, ")

    # Continue with original method
    timer = Timer.from_file(config_filename=config_filename)
    activity_manager = cls.ActivityManager.from_file(
        config_filename=config_filename,
        world=world,
        leisure=leisure,
        travel=travel,
        sexual_encounter=sexual_encounter,
        policies=policies,
        timer=timer,
        record=record,
    )

    # Store feature flags to pass to the constructor
    feature_flags = {
        "friend_hangouts_enabled": friend_hangouts_enabled,
        "sexual_encounters_enabled": sexual_encounters_enabled,
        "test_and_trace_enabled": test_and_trace_enabled,
        "ratty_dynamics_enabled": ratty_dynamics_enabled,
        "rat_data_saving_enabled": rat_data_saving_enabled
    }

    simulator = cls(
        world=world,
        interaction=interaction,
        timer=timer,
        events=events,
        activity_manager=activity_manager,
        epidemiology=epidemiology,
        record=record,
        feature_flags=feature_flags
    )

    # Initialise checkpointing system with config file
    if CHECKPOINTING_AVAILABLE:
        # Replace the default checkpointing with config-based one

        # Get the checkpoint directories (separate read/write for child runs)
        checkpoint_read_dir = "checkpoints"
        checkpoint_write_dir = "checkpoints"

        if hasattr(simulator, 'record') and simulator.record and hasattr(simulator.record, 'record_path'):
            run_dir = simulator.record.record_path.parent
            own_checkpoint_dir = run_dir / "checkpoints"

            # Check if this might be a child run by looking for metadata
            metadata_file = run_dir / "metadata.json"
            if metadata_file.exists():
                try:
                    import json
                    with open(metadata_file, 'r') as f:
                        metadata = json.load(f)

                    parent_run_id = metadata.get("parent_run_id")
                    if parent_run_id:
                        # This is a child run - separate read and write directories
                        parent_checkpoint_dir = run_dir.parent / parent_run_id / "checkpoints"
                        if parent_checkpoint_dir.exists():
                            checkpoint_read_dir = str(parent_checkpoint_dir)
                            checkpoint_write_dir = str(own_checkpoint_dir)
                            output_logger.info(f"Child run detected:")
                            output_logger.info(f"  - Reading checkpoints from parent: {checkpoint_read_dir}")
                            output_logger.info(f"  - Writing checkpoints to child: {checkpoint_write_dir}")
                        else:
                            checkpoint_read_dir = str(own_checkpoint_dir)
                            checkpoint_write_dir = str(own_checkpoint_dir)
                            output_logger.warning(f"Parent checkpoint directory not found, using child directory: {checkpoint_write_dir}")
                    else:
                        # Regular run - use own checkpoint directory for both
                        checkpoint_read_dir = str(own_checkpoint_dir)
                        checkpoint_write_dir = str(own_checkpoint_dir)
                        output_logger.info(f"Regular run using own checkpoint directory: {checkpoint_write_dir}")
                except Exception as e:
                    checkpoint_read_dir = str(own_checkpoint_dir)
                    checkpoint_write_dir = str(own_checkpoint_dir)
                    output_logger.warning(f"Failed to read metadata, using default directory: {checkpoint_write_dir}")
            else:
                checkpoint_read_dir = str(own_checkpoint_dir)
                checkpoint_write_dir = str(own_checkpoint_dir)
                output_logger.info(f"No metadata file, using default directory: {checkpoint_write_dir}")

        # Replace with config-based checkpointing
        simulator.checkpointing = add_checkpointing_from_config_with_directories(
            simulator, 
            config_path=config_filename,
            checkpoint_read_dir=checkpoint_read_dir,
            checkpoint_write_dir=checkpoint_write_dir
        )
        output_logger.info(f"Checkpointing system initialised from config: {config_filename}")

    return simulator

restore_from_checkpoint(checkpoint_name)

Restore simulation from a checkpoint.

Parameters:

Name Type Description Default
checkpoint_name str

Name of the checkpoint to restore from

required

Returns:

Name Type Description
bool bool

True if restoration was successful

Source code in june/simulator.py
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
def restore_from_checkpoint(self, checkpoint_name: str) -> bool:
    """Restore simulation from a checkpoint.

    Args:
        checkpoint_name (str): Name of the checkpoint to restore from

    Returns:
        bool: True if restoration was successful
    """
    if self.checkpointing is None:
        output_logger.warning("Checkpointing system not available")
        return False

    try:
        return self.checkpointing.restore_from_checkpoint(checkpoint_name)
    except Exception as e:
        output_logger.error(f"Error restoring from checkpoint: {e}")
        return False

run()

Run simulation with n_seed initial infections

Source code in june/simulator.py
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
def run(self):
    """Run simulation with n_seed initial infections"""

    # Calculate remaining days to run
    current_time = self.timer.now
    remaining_days = self.timer.total_days - current_time

    output_logger.info(
        f"Starting simulation for {self.timer.total_days} days at day {self.timer.date},"
        f"to run for {remaining_days:.2f} days"
    )

    if self.test_and_trace_enabled:
        # Check if TTEventRecorder already exists (from checkpoint restoration)
        existing_recorder = GlobalContext.get_tt_event_recorder()

        if existing_recorder is not None:
            output_logger.info("Test and Trace enabled, using existing TTEventRecorder from checkpoint")
            output_logger.info(f"Existing TTEventRecorder filename: {existing_recorder.filename}")
        else:
            output_logger.info("Test and Trace enabled, no existing TTEventRecorder found")
            output_logger.info("Initialising new TTEventRecorder")

            # Use record path for TTEventRecorder if available
            if self.record and hasattr(self.record, 'record_path'):
                tt_output_dir = self.record.record_path / "h5_test_trace"
            else:
                tt_output_dir = "./results/h5_test_trace"  # Fallback

            tt_recorder = TTEventRecorder(output_dir=str(tt_output_dir))
            GlobalContext.set_tt_event_recorder(tt_recorder)
            output_logger.info(f"New TTEventRecorder filename: {tt_recorder.filename}")
            output_logger.info(f"TTEventRecorder output directory: {tt_output_dir}")

            # Apply any pending TTEventRecorder data from checkpoint restoration
            if hasattr(self, '_pending_tt_event_recorder_data'):
                output_logger.info("Applying pending TTEventRecorder data from checkpoint")
                self._apply_pending_tt_event_recorder_data(tt_recorder)
                delattr(self, '_pending_tt_event_recorder_data')
                output_logger.info("TTEventRecorder data restoration completed")

    else:
        output_logger.info("Test and Trace disabled, skipping TTEventRecorder")
        GlobalContext.set_tt_event_recorder(None)

    # Rat manager is already initialised normally

    GlobalContext.set_simulator(self)

    # Update registered members home ranks after potential checkpoint restoration
    self.update_registered_members_home_ranks()

    # Update friend home ranks after domain splitting
    if self.friend_hangouts_enabled:
        self.update_friends_home_ranks()
        mpi_comm.Barrier()

    self.clear_world()

    if self.record is not None:
        try:
            self.record.parameters(
                interaction=self.interaction,
                epidemiology=self.epidemiology,
                activity_manager=self.activity_manager,
            )
        except Exception as e:
            output_logger.error(f"Error recording parameters: {e}")

    #START OF THE SIMULATION LOOP
    while self.timer.date < self.timer.final_date:            

        if self.epidemiology:
            self.epidemiology.infection_seeds_timestep(
                self.timer, record=self.record
            )

        mpi_comm.Barrier()
        if mpi_rank == 0:
            rank_logger.info("Next timestep")
        self.do_timestep()

        next(self.timer)

        # Check for checkpoint creation AFTER advancing to next day
        # This way checkpoint represents "ready to start the next day"
        if self.checkpointing is not None:
            integrate_checkpointing_in_simulation_loop(self.checkpointing)

    # Ensure all ranks have finished saving data 
    if self.save_rat_data:
        mpi_comm.Barrier()  # Wait for all ranks to finish saving data

        # Just report data location - no post-processing during simulation
        if mpi_rank == 0 and self.rat_manager is not None:
            if self.record and hasattr(self.record, 'record_path'):
                rat_data_dir = self.record.record_path / "rat_data"
            else:
                rat_data_dir = "outputs/rat_data"

            output_logger.info(f"Rat simulation data saved to: {rat_data_dir}")
            output_logger.info("To create visualizations, run:")
            output_logger.info(f"   python plot_maker/post_process_rat_data.py {rat_data_dir}")

    if self.record:
        self.record.combine_outputs()

    if self.test_and_trace_enabled:
        from june.records.test_trace_event_recording import export_simulation_results

        # Use record path for test and trace export if available
        if self.record and hasattr(self.record, 'record_path'):
            tt_export_dir = str(self.record.record_path)
        else:
            tt_export_dir = "./results"  # Fallback

        export_simulation_results(output_dir=tt_export_dir)

update_friends_home_ranks()

Update the home rank for each person's friends after domain splitting. Replaces the default home rank (0) with the actual home rank where each friend resides.

Works in both MPI and non-MPI environments: - In MPI mode: Ranks collaborate to find friend home ranks - In non-MPI mode: All friends are assigned to rank 0

Source code in june/simulator.py
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
def update_friends_home_ranks(self):
    """Update the home rank for each person's friends after domain splitting.
    Replaces the default home rank (0) with the actual home rank where each friend resides.

    Works in both MPI and non-MPI environments:
    - In MPI mode: Ranks collaborate to find friend home ranks
    - In non-MPI mode: All friends are assigned to rank 0

    """

    if not mpi_available:
        return

    # Step 1: Collect all friend IDs from people on this rank
    all_friend_ids = set()
    people_with_friends = []

    for person in self.world.people.members:
        if hasattr(person, 'friends') and person.friends:
            # Handle both old format (just home_rank) and new format (dict)
            for friend_id, friend_data in person.friends.items():
                all_friend_ids.add(friend_id)
            people_with_friends.append(person)

    # Convert to sorted list for consistent ordering
    all_friend_ids = sorted(list(all_friend_ids))

    from june.demography.person import Person

    # Step 2: Check which friend IDs exist on this rank
    local_id_to_rank = {}
    unknown_ids = []

    for friend_id in all_friend_ids:
        person = Person.find_by_id(friend_id)
        if person is not None:
            # Found locally - store their home rank
            local_id_to_rank[friend_id] = getattr(person, '_home_rank', mpi_rank)
        else:
            # Not found locally - add to list of IDs to query other ranks
            unknown_ids.append(friend_id)

    # Step 3: Share unknown IDs with other ranks
    all_unknown_ids = mpi_comm.allgather(unknown_ids)

    # Step 4: Check if any of the IDs from other ranks exist on this rank
    additional_mappings = {}

    for rank, rank_unknown_ids in enumerate(all_unknown_ids):
        if rank == mpi_rank:
            # Skip our own unknown IDs
            continue

        for friend_id in rank_unknown_ids:
            person = Person.find_by_id(friend_id)
            if person is not None:
                # Found a friend that another rank was looking for
                additional_mappings[friend_id] = getattr(person, '_home_rank', mpi_rank)

    # Step 5: Share these additional mappings
    all_additional_mappings = mpi_comm.allgather(additional_mappings)

    # Build the global friend_id-to-home_rank mapping
    global_friend_to_home_rank = {}
    # Add our local findings first
    global_friend_to_home_rank.update(local_id_to_rank)

    # Add additional mappings from all ranks
    for rank_mappings in all_additional_mappings:
        global_friend_to_home_rank.update(rank_mappings)

    # Step 6: Update each person's friends dictionary with correct home ranks
    updated_people = 0
    updated_friends = 0

    for person in people_with_friends:
        person_updated = False

        # Create a new friends dictionary with updated home ranks
        updated_friends_dict = {}

        for friend_id, friend_data in person.friends.items():
            # Handle both old format (just home_rank) and new format (dict)
            if isinstance(friend_data, dict):
                # New format - update home_rank, keep hobbies
                current_home_rank = friend_data.get("home_rank", 0)
                actual_home_rank = global_friend_to_home_rank.get(friend_id)

                if actual_home_rank is not None:
                    updated_friends_dict[friend_id] = {
                        "home_rank": actual_home_rank,
                        "hobbies": friend_data.get("hobbies", [])
                    }

                    # Track if this friend's home rank was updated
                    if current_home_rank != actual_home_rank:
                        updated_friends += 1
                        person_updated = True
                else:
                    # Friend ID not found in any rank, keep current values
                    updated_friends_dict[friend_id] = friend_data
                    output_logger.warning(f"Friend ID {friend_id} not found in any rank for person {person.id}")

        # Replace the person's friends dictionary
        person.friends = updated_friends_dict

        if person_updated:
            updated_people += 1

    # Log statistics
    # Gather statistics from all ranks
    all_updated_people = mpi_comm.allgather(updated_people)
    all_updated_friends = mpi_comm.allgather(updated_friends)

    if mpi_rank == 0:
        total_updated_people = sum(all_updated_people)
        total_updated_friends = sum(all_updated_friends)
        output_logger.info(f"Friends home ranks updated: {total_updated_people} people, {total_updated_friends} friend relationships")

    # Ensure all ranks are synchronised
    mpi_comm.Barrier()

update_registered_members_home_ranks()

For each group type (companies, care homes, schools, universities), update the registered_members_ids to include the rank where each member lives.

Works in both MPI and non-MPI environments: - In MPI mode: Ranks collaborate to find member home ranks - In non-MPI mode: All members are assigned to rank 0

Source code in june/simulator.py
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
def update_registered_members_home_ranks(self):
    """For each group type (companies, care homes, schools, universities),
    update the registered_members_ids to include the rank where each member lives.

    Works in both MPI and non-MPI environments:
    - In MPI mode: Ranks collaborate to find member home ranks
    - In non-MPI mode: All members are assigned to rank 0

    """

    if mpi_available:
        output_logger.info(f"Updating registered members home ranks on rank {mpi_rank}")
    else:
        output_logger.info("Updating registered members home ranks (non-MPI mode)")

    # Group types to check
    group_types = [
        ("companies", "Company"), 
        ("care_homes", "CareHome"), 
        ("schools", "School"),
        ("universities", "University")
    ]

    # Step 1: Collect all member IDs from groups on this rank
    all_member_ids = set()
    groups_with_members = []

    for group_type_name, _ in group_types:
        group_type = getattr(self.world, group_type_name, None)
        if group_type is None or not hasattr(group_type, "members"):
            continue

        for group in group_type.members:
            if not hasattr(group, "registered_members_ids"):
                continue

            for subgroup_id, member_ids in group.registered_members_ids.items():
                for i, member_info in enumerate(member_ids):
                    # Extract the member ID (handle both plain IDs and tuples)
                    if isinstance(member_info, tuple) and len(member_info) == 2:
                        member_id = member_info[0]
                    else:
                        member_id = member_info

                    all_member_ids.add(member_id)

            # Track groups for later updating
            groups_with_members.append((group_type_name, group))

    # Convert to a sorted list for consistent ordering
    all_member_ids = sorted(list(all_member_ids))

    from june.demography.person import Person

    # Different logic for MPI vs non-MPI
    if mpi_available:
        # MPI mode: Distributed ID lookup

        # Step 2: Check which IDs exist on this rank
        local_id_to_rank = {}
        unknown_ids = []

        for member_id in all_member_ids:
            person = Person.find_by_id(member_id)
            if person is not None:
                # Found locally
                local_id_to_rank[member_id] = mpi_rank
            else:
                # Not found locally - add to list of IDs to query other ranks
                unknown_ids.append(member_id)

        # Step 3: Share only the unknown IDs with other ranks
        all_unknown_ids = mpi_comm.allgather(unknown_ids)

        # Step 4: Check if any of the IDs from other ranks exist on this rank
        additional_mappings = {}

        for rank, rank_unknown_ids in enumerate(all_unknown_ids):
            if rank == mpi_rank:
                # Skip our own unknown IDs
                continue

            for member_id in rank_unknown_ids:
                person = Person.find_by_id(member_id)
                if person is not None:
                    # We found an ID that another rank was looking for
                    additional_mappings[member_id] = mpi_rank

        # Step 5: Share these additional mappings
        all_additional_mappings = mpi_comm.allgather(additional_mappings)

        # Build the global ID-to-rank mapping
        global_id_to_rank = {}
        # Add our local findings first
        global_id_to_rank.update(local_id_to_rank)

        # Add additional mappings from all ranks
        for rank_mappings in all_additional_mappings:
            global_id_to_rank.update(rank_mappings)

    else:
        # Non-MPI mode: All IDs are on rank 0
        global_id_to_rank = {member_id: 0 for member_id in all_member_ids}

    # Step 6: Update all groups with the correct home rank information
    for group_type_name, group in groups_with_members:
        for subgroup_id, member_ids in list(group.registered_members_ids.items()):
            updated_member_ids = []

            for member_info in member_ids:
                # Extract the member ID (handle both plain IDs and tuples)
                if isinstance(member_info, tuple) and len(member_info) == 2:
                    member_id = member_info[0]
                else:
                    member_id = member_info

                # Get the home rank from the global mapping
                home_rank = global_id_to_rank.get(member_id)

                if home_rank is not None:
                    # Add to the updated list
                    updated_member_ids.append((member_id, home_rank))
                else:
                    # ID not found in any rank, use default of 0
                    # This should not happen if everything is working correctly
                    updated_member_ids.append((member_id, 0))

            # Replace the old list with the updated one
            group.registered_members_ids[subgroup_id] = updated_member_ids

    # Ensure all ranks are synchronised in MPI mode
    mpi_comm.Barrier()

enable_mpi_debug(results_folder)

Parameters:

Name Type Description Default
results_folder str

Path to the folder where the results are being held.

required
Source code in june/simulator.py
55
56
57
58
59
60
61
62
63
64
65
66
67
def enable_mpi_debug(results_folder):
    """

    Args:
        results_folder (str): Path to the folder where the results are being held.
    """
    from june.logging import MPIFileHandler

    logging_file = Path(results_folder) / "mpi.log"
    with open(logging_file, "w"):
        pass
    mh = MPIFileHandler(logging_file)
    rank_logger.addHandler(mh)